Факторы транскрипции

Материал из Википедии — свободной энциклопедии

Факторы транскрипции (транскрипционные факторы) —

репрессоры) или повышение (активаторы) константы связывания РНК-полимеразы с регуляторными последовательностями регулируемого гена[4][5][6]
.

Определяющая черта факторов транскрипции — наличие в их составе одного или более ДНК-связывающих

метилазы, не имеют ДНК-связывающих доменов, и, следовательно, не могут быть причислены к транскрипционным факторам[7][8][9].

Структура комплекса TATA-связывающего белка/транскрипционного фактора TF(II)B из археи Pyrococcus woesei с ДНК по результатам рентгеноструктурного анализа. Сверху — схематичное изображение третичной структуры
, снизу — молекулярной поверхности комплекса

Консервативность у различных организмов

Факторы транскрипции необходимы для регуляции экспрессии генов и обнаружены у всех живых организмов. Их количество, как абсолютное, так и удельное, возрастает с ростом размера генома[10].

В геноме человека обнаружено более 2600 белков, имеющих ДНК-связывающий домен, и большинство из них предположительно являются факторами транскрипции[11]. Следовательно, около 10 % всех генов в геноме кодируют транскрипционные факторы. Таким образом, они являются самым большим семейством белков человека[12]. Более того, активность многих генов регулируется корпоративным взаимодействием большого числа различных факторов транскрипции, что позволяет обеспечить каждому из генов уникальный способ регуляции в процессе развития организма[9].

Функции

Факторы транскрипции — одна из групп белков, обеспечивающих прочтение и интерпретацию генетической информации. Они связывают ДНК и способствуют инициации программы повышения или понижения транскрипции гена. Таким образом, они жизненно необходимы для нормального функционирования организма на всех уровнях. Ниже перечислены важнейшие из процессов, в которые вовлечены факторы транскрипции.

Регуляция базальной экспрессии генов

Фоновая транскрипционная активность обеспечивается набором ТФ, общим для всех генов. Важный класс эукариотических факторов транскрипции — GTFs (general transcription factors)[13][14]. Многие из его представителей не связывают ДНК непосредственно, а входят в состав комплекса инициации транскрипции (преинициирующего комплекса), который напрямую взаимодействует с РНК-полимеразой. Наиболее распространенными GTF являются TFIIA, TFIIB, TFIID (связываются с т. н. ТАТА-боксом (элементом промотора)), TFIIE, TFIIF, и TFIIH[15].

Помимо ТФ, необходимых для экспрессии всех генов, существуют также специфичные факторы транскрипции, обеспечивающие включение/выключение определённых генов в нужный момент.

Регуляция онтогенеза

Многие ТФ многоклеточных организмов вовлечены в обеспечение их развития

гомеозисные мутации
) у дрозофил приводят к серьёзным нарушениям в дифференцировке сегментов тела данных насекомых (например, развитие ног вместо усиков).

Другой пример данной группы ТФ — продукт гена полоопределяющего региона Y (SRY, Sex-determining Region Y), который играет важную роль в детерминации пола человека.[19]

Ответ на внеклеточные сигналы

Согласованная регуляция взаимодействия клеток многоклеточного организма осуществляется путём высвобождения специальных молекул (

плазматическую мембрану реципиентных клеток, и связывается со своим рецептором в цитоплазме. Рецептор эстрогена проникает в ядро и связывает специфичный участок ДНК, изменяя регуляции транскрипции соответствующего гена[21]
.

Ответ на изменение окружающей среды

ТФ — не единственные конечные звенья сигнальных каскадов, возникающих в ответ на различные внешние стимулы, но они тоже могут быть эффекторами в сигнальных каскадах, индуцируемых воздействием окружающей среды. Например, фактор теплового шока (HSF) активирует гены белков теплового шока, которые обеспечивают выживание при повышении температуры (например, шапероны)[22], фактор, индуцируемый гипоксией (HIF) — при снижении концентрации кислорода[23]; белок SREBP (sterol regulatory element binding protein) помогает поддерживать необходимое содержание липидов в клетках[24].

Контроль клеточного цикла

Многие ТФ, особенно онкогены и онкосупрессоры, участвуют в регуляции клеточного цикла. Они определяют переход от одной фазы клеточного цикла к другой, частоту делений и интенсивность роста. Один из наиболее известных подобных ТФ — онкоген Myc, играющий важную роль в росте клеток и направлении их в апоптоз.

Регуляция

Все общебиологические процессы имеют многоуровневую регуляцию и контроль. Это верно и для ТФ — ТФ не только обеспечивают регуляцию уровня накопления белков и РНК в клетке, но и регулируют активность собственных генов (часто с помощью других ТФ). Ниже кратко описаны основные способы регуляции активности ТФ.

Общие для всех белков

Уровень накопления ТФ в клетке регулируется по той же схеме, что и у других белков за счёт контроля транскрипции, деградации мРНК, трансляции, постпроцессинга белка, его внутриклеточной локализации и деградации. Возможна саморегуляция по принципу отрицательной обратной связи — ТФ репрессирует активность кодирующего его гена.

Внутриядерная локализация

У эукариотических организмов процессы транскрипции и трансляции пространственно разделены — они происходят в ядре и цитоплазме соответственно. После синтеза ТФ должны проникнуть в ядро, преодолев двойную мембрану. Многие белки, функционирующие в ядре, имеют сигнал ядерной локализации — специфичный участок полипептидной цепи, адресующий белок в ядро. Для многих ТФ транслокация является ключевым фактором в регуляции их активности[25]. Важные классы ТФ, такие как некоторые ядерные рецепторы, должны сперва связать эндогенный лиганд-агонист в цитоплазме и только потом транспортироваться в ядро[25].

Активация

ТФ могут быть активированы/деактивированны путём воздействия на их сигнал-чувствительный домен различным образом:

  • связывание лиганда — необходимой для функционирования субстанции, не входящий в состав полипептида (например, ионов Zn2+)
  • фосфорилирование[26][27] — многие ТФ должны быть фосфорилированы для получения возможности связывать ДНК.
  • взаимодействие с другими ТФ и/или корегуляторными белками.

Доступность сайта связывания ДНК

У эукариот гены, не транскрибируемые постоянно, часто находятся в

гистонов и организованных в компактные хроматиновые фибриллы). ДНК в составе гетерохроматина недоступна для многих факторов транскрипции. Для того, чтобы ТФ могли связаться с ДНК, гетерохроматин должен быть трансформирован в эухроматин, обычно путём модификаций гистонов. Также для связывания ТФ с ДНК важную роль играет свобода хроматина от нуклеосом. Хроматин свободный от нуклеосом называется открытым хроматином и значительно чаще связывает факторы транскрипции, чем связанный с нуклеосомами хроматин. Перераспределение нуклеосом осуществляют факторы ремоделирования хроматина
. Сайт связывания ТФ на ДНК может быть недоступным и в случае, если он связан другим фактором транскрипции. Пары факторов транскрипции могут играть антагонистическую роль (активатор — репрессор) при регуляции активности одного гена.

Наличие других кофакторов/транскрипционных факторов

Большинство ТФ не работают в одиночку. Часто для активации транскрипции гена с его регуляторными элементами должно связаться большое количество ТФ. Связывании ТФ вызывает привлечение промежуточных белков, таких как кофакторы, что приводит к сборке преинициационного комплекса и посадке на промотор РНК-полимеразы.

Структура

ТФ являются модульными по структуре и содержат следующие домены[2]:

  • ДНК-связывающий домен (DBD) — взаимодействует со специфичными последовательностями ДНК, характерными для промоторов и энхансеров. Специфичность распознавания определённых последовательностей определяет набор генов, подверженных регуляции данным ТФ;
  • трансактивирующий домен (TAD) — содержит участки связывания других белков, например, транскрипционных корегуляторов[28];
  • сигналраспознающий домен (SSD) (например, лиганд-связывающий домен), который чувствителен к внешнем сигналам и отвечающим за передачу сигнала к другим компонентам транскрипционного комплекса, что вызывает повышение или понижение уровня экспрессии.

ДНК-связывающий домен

Структурно-функциональная единица (домен) факторов транскрипции, связывающая ДНК, называется ДНК-связывающим доменом. Ниже приведён список важнейших семейств ДНК-связывающих доменов/ТФ:

Семейство NCBI conserved domains База данных структурной классификации белков (SCOP) База данных InterPro
Спираль-петля-спираль (helix-loop-helix)[29] cl00228 47460 IPR001092
Лейциновая молния[30] cl02576 57959 IPR004827
C-концевые эффекторные домены составных регуляторов ответа 46894 IPR001789
GCC box cl00033 54175
Спираль-поворот-спираль (helix-turn-helix)[31] cl02600
Гомеодоменные белки — связывают гомеобокс (особый участок ДНК). Играют критическую роль в индивидуальном развитии организмов (онтогенезе).[32] cd00086 46689 IPR009057
Подобные репрессору фага лямбда 47413 IPR010982
srf-подобные cl00109 55455 IPR002100
Парный бокс[33] cl09102
winged helix 46785 IPR011991
Цинковые пальцы[34]
* многодоменные цинковые пальцы типа Cys2His2[35] pfam00096 57667 IPR007087
* Zn2/Cys6 57701
* цинковые пальцы типа Zn2/Cys8 ядерных рецепторов гормонов pfam00105 57716 IPR001628

Сайты связывания ТФ

Участки ДНК, которые взаимодействуют с факторами транскрипции, называются сайтами связывания ТФ. Взаимодействие осуществляется за счёт электростатических сил, водородных связей и сил Ван-дер-Ваальса. За счёт корпоративного, стерически детерминированного действия данных сил, которое определяется пространственной структурой белковой молекулы, ТФ связываться только с определёнными участками ДНК. Не все нуклеотидные основания в ДНК, входящие в сайт связывания ТФ, имеют одинаковую значимость при взаимодействии с белком. Вследствие этого, ТФ обычно связывают не участок со строго определённой первичной структурой, а группу структур с близким сходством, каждую — с разной степенью сродства. Например, хотя консенсусной последовательностью сайта связывания ТАТА-связывающих белков является ТАТАААА, они могут взаимодействовать также с ТАТАТАТ и ТАТАТАА.

Вследствие того, что ТФ взаимодействуют с короткими участками ДНК гетерогенной структуры, потенциальные сайты связывания ТФ могут возникать случайно в достаточно протяжённой молекуле ДНК. Маловероятно, однако, что ТФ взаимодействуют со всеми подходящими элементами в геноме.

Различные ограничения, такие как доступность сайтов и наличие кофакторов, могут способствовать направлению ТФ в нужные участки ДНК. Таким образом, затруднительно на основании последовательности генома достоверно предсказать реальное место посадки ТФ на ДНК in vivo. Дополнительная специфичность ТФ может опосредоваться наличием нескольких ДНК связывающих доменов в составе одного белка, которые взаимодействуют с двумя или более смежными последовательностями одновременно.

Клинические аспекты

В связи с ключевой ролью ТФ в процессе реализации наследственной информации, некоторые заболевания человека могут быть вызваны мутациями в генах ТФ. Ниже приведены некоторые наиболее изученные нарушения подобного рода:

  • Синдром Ретта. Мутации в гене ТФ MECP2 ассоциированы с синдромом Ретта, нарушением в развитии нервной системы[36].
  • Диабеты. Редкая форма диабета, называемая MODY (Maturity onset diabetes of the young) может быть обусловлена мутациями в генах некоторых ТФ[37].
  • Developmental verbal dyspraxia. (нарушение речевых функций). Мутации в гене ТФ FOXP2 ассоциированы с развитием данного заболевания, при котором человек не может производить координированных движений, необходимых для речевой функции[38][39].
  • Аутоиммунные заболевания. Мутации в гене ТФ FOXP3 связаны с аутоиммунным заболеванием IPEX (immune dysregulation polyendocrinopathy enteropathy X-linked syndrome)[39].
  • Рак. Многие факторы транскрипции являются онкогенами или онкосупрессорами, и их мутации или неправильная регуляция могут приводить к развитию рака. Например, синдром Li-Fraumeni обусловлен мутациями в гене онкосупрессора p53[40].

Классификация

ТФ могут классифицироваться по (1) механизму действия, (2) регуляторной функции, (3) структуре ДНК-связывающего домена, а также на натуральные и (5)искусственные.

Механизм действия

По данному признаку выделяют три класса ТФ:

  • Главные факторы транскрипции (GTFs), вовлеченные в образование инициационного комплекса. Наиболее важные из них — TFIIA, TFIIB, TFIID, TFIIE, TFIIF, и TFIIH. Они присутствуют во всех клетках и взаимодействуют с кором промотора генов, транскрибируемых РНК-полимеразой второго класса.
  • ТФ, взаимодействующие с upstream-участками ДНК, (областями, расположенными до промотора, лежащими относительно него с другой стороны от кодирующей области гена).
  • Индуцируемые ТФ сходны с предыдущим классом, но требуют активации либо ингибирования.

Функция

  1. Конститутивные — присутствуют всегда во всех клетках — главные факторы транскрипции,
    NF1, CCAAT
    .
  2. Активируемые (активны в определённых условиях)
    1. Участвующие в развитии организма (клетко-специфичные) — экспрессия строго контролируется, но, начав экспрессироваться, не требуют дополнительной активации — GATA, HNF, PIT-1, MyoD, Myf5, Hox, Winged Helix.
    2. Сигнал-зависимые — требуют внешнего сигнала для активации
      1. внеклеточные сигнал-зависимые — ядерные рецепторы
      2. внутриклеточные сигнал-зависимые — активируются низкомолекулярными внутриклеточными соединениями — SREBP, p53, одиночные ядерные рецепторы
      3. мембраносвязанные рецептор-зависимые — фосфорилируются киназами сигнального каскада
        1. резидентные ядерные факторы — находятся в ядре независимо от активации — CREB, AP-1, Mef2
        2. латентные цитоплазматические факторы — в неактивном состоянии локализованы в цитоплазме, после активации транспортируются в ядро — STAT, R-SMAD,
          NF-kB, Notch
          , TUBBY, NFAT.

Структурная классификация

лейциновая молния
» в комплексе с ДНК. Вверху — схематичное изображение молекулярной поверхности, внизу — третичной структуры комплекса.
спираль-петля-спираль
» в комплексе с ДНК. Вверху — схематичное изображение третичной структуры, внизу — молекулярной поверхности комплекса.

Факторы транскрипции классифицируют на основании сходства первичной структуры (что предполагает и сходство третичной структуры) ДНК-связывающих доменов[41][42][43].

  • 1 Надкласс: Basic Domains (
    Basic-helix-loop-helix
    )
  • 2 Надкласс: Zinc-coordinating DNA-binding domains
  • 3 Надкласс:
    Спираль-поворот-спираль
    • 3.1 Класс: Гомеодомен
      • 3.1.1 Семейство: Homeo domain only; includes Ubx
      • 3.1.2 Семейство: POU domain factors; includes Oct
      • 3.1.3 Семейство: Homeo domain with LIM region
      • 3.1.4 Семейство: homeo domain plus zinc finger motifs
    • 3.2 Класс: Paired box
      • 3.2.1 Семейство: Paired plus homeo domain
      • 3.2.2 Семейство: Paired domain only
    • 3.3 Класс: Fork head / winged helix
      • 3.3.1 Семейство: Developmental regulators; includes forkhead
      • 3.3.2 Семейство: Tissue-specific regulators
      • 3.3.3 Семейство: Cell-cycle controlling factors
      • 3.3.0 Семейство: Other regulators
    • 3.4 Класс: Heat Shock Factors
      • 3.4.1 Семейство: HSF
    • 3.5 Класс: Tryptophan clusters
    • 3.6 Класс: TEA (transcriptional enhancer factor) domain
  • 4 Надкласс: beta-Scaffold Factors with Minor Groove Contacts
    • 4.1 Класс: RHR (Rel homology region)
      • 4.1.1 Семейство: Rel/
        NF-kappaB
      • 4.1.2 Семейство: ankyrin only
      • 4.1.3 Семейство: NF-AT (Nuclear Factor of Activated T-cells) (NFATC1, NFATC2, NFATC3)
    • 4.2 Класс: STAT
      • 4.2.1 Семейство: STAT
    • 4.3 Класс: p53
      • 4.3.1 Семейство: p53
    • 4.4 Класс: MADS box
      • 4.4.1 Семейство: Regulators of differentiation; includes (Mef2)
    • 4.5 Класс: beta-Barrel alpha-helix transcription factors
    • 4.6 Класс: TATA binding proteins
      • 4.6.1 Семейство: TBP
      • 4.7.1 Семейство: SOX genes, SRY
      • 4.7.2 Семейство: TCF-1 (TCF1)
      • 4.7.3 Семейство: HMG2-related, SSRP1
      • 4.7.5 Семейство: MATA
    • 4.8 Класс: Heteromeric CCAAT factors
      • 4.8.1 Семейство: Heteromeric CCAAT factors
    • 4.9 Класс: Grainyhead
      • 4.9.1 Семейство: Grainyhead
    • 4.10 Класс: Cold-shock domain factors
      • 4.10.1 Семейство: csd
    • 4.11 Класс: Runt
      • 4.11.1 Семейство: Runt
  • 0 Надкласс: Другие факторы транскрипции
    • 0.1 Класс: Copper fist proteins
    • 0.2 Класс: HMGI(Y) (HMGA1)
      • 0.2.1 Семейство: HMGI(Y)
    • 0.3 Класс: Pocket domain
    • 0.4 Класс: E1A-like factors
    • 0.5 Класс: AP2/EREBP-related factors
      • 0.5.1 Семейство: AP2
      • 0.5.2 Семейство: EREBP
      • 0.5.3 Надсемейство: AP2/B3
        • 0.5.3.1 Семейство: ARF
        • 0.5.3.2 Семейство: ABI
        • 0.5.3.3 Семейство: RAV

Искусственные факторы транскрипции

Систему CRISPR можно адаптировать так, чтобы она действовала как транскрипционный фактор (crisprTF). Для этого CRISPR-ассоциированный белок, известный как Cas9, изменяют так, чтобы он после связывания с ДНК больше не мог её расщепить. Затем к нему добавляют сегмент, который активирует или подавляет экспрессию генов путём модуляции транскрипционного механизма клетки[44][45][46][47]. В отличие от транскрипционных факторов на базе цинковых пальцев и TAL-эффектора[англ.], для узнавания ДНК системе CRISPR-Cas требуется только создание соответствующей последовательности РНК-«гида», а не создание новых белковых доменов фермента, что делает его гораздо более доступным благодаря дешевизне и простоте (вплоть до того что разработан набор правил — «грамматика» — описывающих, как спроектировать синтетический транскрипционный фактор (STFS) и программа для его автоматизированного проектирования[48]).

См. также

Примечания

  1. Coordinated decreases in rRNA gene transcription factors and rRNA synthesis during muscle cell differentiation - PubMed. Дата обращения: 1 июля 2020. Архивировано 4 июля 2020 года.
  2. .
  3. Karin M. Too many transcription factors: positive and negative interactions (англ.) // New Biol. : journal. — 1990. — Vol. 2, no. 2. — P. 126—131. — PMID 2128034.
  4. .
  5. .
  6. .
  7. .
  8. .
  9. .
  10. .
  11. .
  12. ]
  13. .
  14. .
  15. Thomas M.C., Chiang C.M. The general transcription machinery and general cofactors (англ.) // Critical reviews in biochemistry and molecular biology : journal. — 2006. — Vol. 41, no. 3. — P. 105—178. — PMID 16858867.
  16. Lobe C.G. Transcription factors and mammalian development (неопр.) // Current topics in developmental biology. — 1992. — Т. 27. — С. 351—383. — PMID 1424766.
  17. .
  18. .
  19. .
  20. .
  21. Osborne C.K., Schiff R., Fuqua S.A., Shou J. Estrogen receptor: current understanding of its activation and modulation (англ.) // Clin. Cancer Res.[англ.] : journal. — 2001. — December (vol. 7, no. 12 Suppl). — P. 4338s—4342s; discussion 4411s—4412s. — PMID 11916222.
  22. .
  23. .
  24. Weber L.W., Boll M., Stampfl A. Maintaining cholesterol homeostasis: sterol regulatory element-binding proteins (англ.) // World J. Gastroenterol.[англ.] : journal. — 2004. — November (vol. 10, no. 21). — P. 3081—3087. — PMID 15457548. Архивировано 11 августа 2007 года.
  25. 1 2 Whiteside S.T., Goodbourn S. Signal transduction and nuclear targeting: regulation of transcription factor activity by subcellular localisation (англ.) // Journal of Cell Science[англ.] : journal. — The Company of Biologists[англ.], 1993. — April (vol. 104 ( Pt 4)). — P. 949—955. — PMID 8314906.
  26. Bohmann D. Transcription factor phosphorylation: a link between signal transduction and the regulation of gene expression (англ.) // Cancer cells (Cold Spring Harbor, N.Y. : 1989) : journal. — 1990. — November (vol. 2, no. 11). — P. 337—344. — PMID 2149275.
  27. Weigel N.L., Moore N.L. Steroid Receptor Phosphorylation: A Key Modulator of Multiple Receptor Functions (англ.) : journal. — 2007. — PMID 17536004.
  28. .
  29. Littlewood T.D., Evan G.I. Transcription factors 2: helix-loop-helix (неопр.) // Protein profile. — 1995. — Т. 2, № 6. — С. 621—702. — PMID 7553065.
  30. .
  31. .
  32. .
  33. .
  34. .
  35. .
  36. Fichou Y., Nectoux J., Bahi-Buisson N., Rosas-Vargas H., Girard B., Chelly J., Bienvenu T. The first missense mutation causing Rett syndrome specifically affecting the MeCP2_e1 isoform. (англ.) // Neurogenetics : journal. — 2008. — November. — PMID 19034540.
  37. Al-Quobaili F., Montenarh M. Pancreatic duodenal homeobox factor-1 and diabetes mellitus type 2 (review). (англ.) // Int J Mol Med.[англ.] : journal. — 2008. — Vol. 21(4). — P. 399—404. — PMID 18360684.
  38. Lai C.S., Fisher S.E., Hurst J.A., Vargha-Khadem F., Monaco AP. A forkhead-domain gene is mutated in a severe speech and language disorder. (англ.) // Nature : journal. — 2001. — Vol. 413(6855). — P. 519—523. — PMID 11586359.
  39. 1 2 Banerjee-Basu S., Baxevanis A.D. Structural analysis of disease-causing mutations in the P-subfamily of forkhead transcription factors. (англ.) // Proteins : journal. — 2004. — Vol. 54(4). — P. 639—647. — PMID 14997560.
  40. Ariffin H., Martel-Planche G., Daud S.S., Ibrahim K., Hainaut P. Li-Fraumeni syndrome in a Malaysian kindred. (неопр.) // Cancer Genet Cytogenet.. — 2008. — Т. 186(1). — С. 49—53. — PMID 18786442.
  41. Stegmaier P., Kel A.E., Wingender E. Systematic DNA-binding domain classification of transcription factors (англ.) // Genome informatics. International Conference on Genome Informatics : journal. — 2004. — Vol. 15, no. 2. — P. 276—286. — PMID 15706513. Архивировано 19 июня 2013 года.
  42. .
  43. TRANSFAC® database. Дата обращения: 5 августа 2007. Архивировано 21 марта 2012 года.
  44. ]
  45. ]
  46. ]
  47. ]
  48. ]