Эта статья входит в число хороших статей

Z-ДНК

Материал из Википедии — свободной энциклопедии
Структура Z-ДНК

Z-ДНК — одна из многих возможных структур двойной спирали

А-ДНК и В-ДНК, хотя точные её функции к настоящему моменту не определены[1]
.

История изучения

Левозакрученная ДНК впервые была открыта Робертом Уэллсом и коллегами при изучении

кристаллическая структура Z-ДНК, где в ходе рентгеноструктурного анализа выяснилось, что она является первым однокристаллическим фрагментом ДНК (самокомплементарный гексамер ДНК d(CG)3). Было установлено, что Z-ДНК представляет собой левозакрученную двойную спираль ДНК из двух антипараллельных цепей, соединённых связями между парами азотистых оснований. Эти работы были проведены Эндрю Уонг (англ. Andrew Wang), Александром Ричем и их сотрудниками в Массачусетском технологическом институте[3]
.

В

клетке. Везде, где есть сегменты форм Z-ДНК, должны быть также В-Z-соединения на их концах, связывающие Z-форму с B-формой, встречающейся во всём остальном геноме
.

В

РНК-версия Z-ДНК как трансформированная форма двойной правозакрученной спирали A-РНК в левозакрученную спираль[7]. Переход от А-РНК в Z-РНК, тем не менее, был описан уже в 1984 году[8]
.

Структура

Соединение B- и Z-ДНК. Обратите внимание на два вытесненных основания, помеченных ярким цветом

Z-ДНК значительно отличается от правозакрученных форм. Z-ДНК — левозакрученная и имеет первичную структуру, повторяющуюся через каждые 2 пары оснований. На один поворот спирали приходится 12 пар оснований. В отличие от А- и В-ДНК, в Z-ДНК большая бороздка слабо различима, малая бороздка узкая и глубокая[9]. Вообще, структура Z-ДНК энергетически невыгодна, хотя некоторые условия могут активизировать её формирования, как то: чередующиеся пуриново-пиримидиновые последовательности (особенно поли(dGC)2), негативная сверхспирализация ДНК, высокое содержание солей и некоторые катионы (все при физиологической температуре — 37 °C и pH 7,3—7,4). Z-ДНК может соединяться с B-ДНК в структуру, приводящую к вытеснению пар оснований (см. рис.)[10].

C2'-эндо- и C3'-эндоконформации сахаров

Ещё одной особенностью Z-ДНК является чередование конформаций

дезоксигуанозина сахар находится в С3'-эндоконформации, а основание имеет крайне нетипичную син-конформацию[12]
.

Стэкинг оснований в Z-ДНК обладает новыми, присущими лишь этой форме свойствами. Так, стэкинговые взаимодействия имеются только между остатками цитозина противоположных цепей, а остатки гуанина вообще не взаимодействуют друг с другом[1].

нм, а для цитозиновых — 0,76 нм. При этом соседние сахара «смотрят» в противоположные стороны, и из-за этого линия, последовательно соединяющая атомы фосфора в цепи, становится зигзагообразной (отсюда название — Z-ДНК)[1]
.

Структура Z-ДНК сложна для изучения, потому что она практически не существует в стабильной форме двойной спирали. Напротив, левозакрученная спираль Z-ДНК является временной структурой, появляющейся в результате биологической активности и быстро исчезающей[13].

Оси спирали A-, B- и Z-ДНК. Конформации сахаров и оснований указаны для Z-ДНК

Переход из В-ДНК в Z-ДНК

Как уже говорилось, В- и Z-формы способны переходить друг в друга. Это происходит при изменении ионной силы раствора или концентрации катионов, нейтрализующих отрицательный заряд фосфодиэфирного каркаса. При этом для перехода нет необходимости для расхождения цепей, он инициируется разрывом водородных связей у нескольких пар оснований, после чего гуанин фиксируется в син-конформации, водородные связи восстанавливаются, и основания вновь образуют уотсон-криковские пары. Область перехода движется по спирали в виде петли[1].

Предсказание структуры Z-ДНК

В настоящий момент возможно предсказать правдоподобную последовательность ДНК, находящейся в форме Z-ДНК. Алгоритм для предсказания склонности ДНК перестраиваться из В-формы в Z-форму, ZHunt, был написан в 1984 году д-ром P. Shing Ho из Массачусеткого технологического института[14]. Позже этот алгоритм был развит Трейси Кэмп и коллегами для определения мест образования Z-ДНК во всём геноме[15].

Алгоритм ZHunt доступен по ссылке Z-Hunt online.

Биологическое значение

Z-ДНК обнаружены у представителей всех трёх

белками, специфическим к Z-ДНК, определёнными катионами типа спермидина[англ.] и метилированием дезоксицитидина[17]
.

Предположение о том, что Z-ДНК обеспечивает сверхспирализацию ДНК во время транскрипции[6][18], подтверждается тем, что потенциал к образованию Z-форм обнаруживается на участках, задействованных в активной транскрипции. Была показана связь мест образования Z-ДНК в генах 22-й хромосомы человека и известных для них сайтов начала транскрипции[15].

Z-ДНК образуется после начала транскрипции. Первый

РНК[24][25]
.

В

клетки от 5 до 10 раз, причём эти гены блокируют способность клеток к саморазрушению (апоптозу) как к защитной реакции против инфекции
.

Рич предположил, что Z-ДНК необходима для транскрипции и E3L стабилизирует Z-ДНК, таким образом увеличивая экспрессию антиапоптических генов. Он также выдвинул идею, что малые молекулы могут связываться с E3L, препятствуя соединению этого белка с Z-ДНК, и в итоге мешают экспрессии антиапоптозных генов. Потенциально это может быть использовано в основе метода защиты от оспы, вызываемой поксвирусами.

С помощью антител к Z-ДНК эта форма ДНК была обнаружена в междисковых областях политенных хромосом. Дело в том, что нуклеосомы имеются только у В-ДНК, а переход в Z-форму разрушает структуру нуклеосомы и, следовательно, состоящего из нуклеосом хроматина. В связи с этим предполагается, что Z-форма может выполнять какую-то регуляторную роль, тем более, переход В → Z обратим[1].

Установлено, что

репликации[28]
.

Сравнение геометрических параметров некоторых форм ДНК

Геометрический параметр A-форма B-форма Z-форма
Направление правозакрученная правозакрученная левозакрученная
Единица повтора 1 пара оснований (п. о.) 1 п. о. 2 п. о.
Оборот (в градусах) 32,7° 35,9° 60°/2
Изгиб 11 п. о. 10,5 п. о. 12 п. о.
Расположение п.о.
относительно оси
+19° −1.2° −9°
Подъём вдоль оси 2,3 Å (0,23 нм) 3,32 Å (0,332 нм) 3,8 Å (0,38 нм)
Наклон 28,2 Å (2,82
нм
)
33,2 Å (3,32 нм) 45,6 Å (4,56 нм)
Скрученность +18° +16°
Конформация основания анти- анти- C: анти-,
G: син-
Конформация сахара C3'-эндо C2'-эндо C: C2'-эндо,
G: C3'-эндо
Диаметр 23 Å (2,3 нм) 20 Å (2,0 нм) 18 Å (1,8 нм)
Источники:[29][30][31]
и Z-ДНК

Примечания

  1. 1 2 3 4 5 Коничев, Севастьянова, 2012, с. 93.
  2. Mitsui et al. Physical and enzymatic studies on poly d(I-C)-poly d(I-C), an unusual double-helical DNA (англ.) // Nature (London) : journal. — 1970. — Vol. 228, no. 5277. — P. 1166—1169. — PMID 4321098.
  3. .
  4. .
  5. .
  6. .
  7. .
  8. .
  9. 1 2 Nelson, Cox, 2008, p. 281.
  10. .
  11. Коничев, Севастьянова, 2012, с. 82.
  12. Коничев, Севастьянова, 2012, с. 92.
  13. 12 октября 2008 года.
  14. Ho P. S., Ellison M. J., Quigley G. J., Rich A. A computer aided thermodynamic approach for predicting the formation of Z-DNA in naturally occurring sequences (англ.) // EMBO Journal[англ.] : journal. — 1986. — Vol. 5, no. 10. — P. 2737—2744. — PMID 3780676. — PMC 1167176.
  15. 25 сентября 2019 года.
  16. Paul Blum. Archaea: Ancient Microbes, Extreme Environments, and the Origin of Life. — Academic Press, 2001. — Vol. 50. — P. 206. — (Advances in Applied Microbiology).
  17. Коничев, Севастьянова, 2012, с. 93—94.
  18. .
  19. .
  20. .
  21. .
  22. .
  23. .
  24. .
  25. Halber D. Scientists observe biological activities of 'left-handed' DNA. MIT News Office (11 сентября 1999). Дата обращения: 29 сентября 2008. Архивировано 16 февраля 2013 года.
  26. .
  27. .
  28. .
  29. Sinden, Richard R. DNA structure and function (неопр.). — 1st. — Academic Press, 1994. — С. 398. — ISBN 0-126-45750-6.
  30. .
  31. .

Литература