Cryptography

Checked
Page protected with pending changes
Source: Wikipedia, the free encyclopedia.

Lorenz cipher machine twelve rotors with mechanism
Lorenz cipher machine, used in World War II to encrypt communications of the German High Command

Cryptography, or cryptology (from

.

Cryptography prior to the modern age was effectively synonymous with

eavesdropping adversary.[6] Since the development of rotor cipher machines in World War I and the advent of computers in World War II
, cryptography methods have become increasingly complex and their applications more varied.

Modern cryptography is heavily based on

mathematical theory and computer science practice; cryptographic algorithms are designed around computational hardness assumptions, making such algorithms hard to break in actual practice by any adversary. While it is theoretically possible to break into a well-designed system, it is infeasible in actual practice to do so. Such schemes, if well designed, are therefore termed "computationally secure". Theoretical advances (e.g., improvements in integer factorization algorithms) and faster computing technology require these designs to be continually reevaluated and, if necessary, adapted. Information-theoretically secure schemes that provably cannot be broken even with unlimited computing power, such as the one-time pad
, are much more difficult to use in practice than the best theoretically breakable but computationally secure schemes.

The growth of cryptographic technology has raised a number of legal issues in the Information Age. Cryptography's potential for use as a tool for espionage and sedition has led many governments to classify it as a weapon and to limit or even prohibit its use and export.[7] In some jurisdictions where the use of cryptography is legal, laws permit investigators to compel the disclosure of encryption keys for documents relevant to an investigation.[8][9] Cryptography also plays a major role in digital rights management and copyright infringement disputes with regard to digital media.[10]

Terminology

diagram showing shift three alphabetic cypher D becomes A and E becomes B
Alphabet shift ciphers are believed to have been used by Julius Caesar over 2,000 years ago.[6] This is an example with k = 3. In other words, the letters in the alphabet are shifted three in one direction to encrypt and three in the other direction to decrypt.

The first use of the term "cryptograph" (as opposed to "cryptogram") dates back to the 19th century—originating from "The Gold-Bug", a story by Edgar Allan Poe.[11][12]

Until modern times, cryptography referred almost exclusively to "encryption", which is the process of converting ordinary information (called plaintext) into an unintelligible form (called ciphertext).[13] Decryption is the reverse, in other words, moving from the unintelligible ciphertext back to plaintext. A cipher (or cypher) is a pair of algorithms that carry out the encryption and the reversing decryption. The detailed operation of a cipher is controlled both by the algorithm and, in each instance, by a "key". The key is a secret (ideally known only to the communicants), usually a string of characters (ideally short so it can be remembered by the user), which is needed to decrypt the ciphertext. In formal mathematical terms, a "cryptosystem" is the ordered list of elements of finite possible plaintexts, finite possible cyphertexts, finite possible keys, and the encryption and decryption algorithms that correspond to each key. Keys are important both formally and in actual practice, as ciphers without variable keys can be trivially broken with only the knowledge of the cipher used and are therefore useless (or even counter-productive) for most purposes. Historically, ciphers were often used directly for encryption or decryption without additional procedures such as authentication or integrity checks.

There are two main types of cryptosystems:

Elliptic Curve Cryptography), and Post-quantum cryptography. Secure symmetric algorithms include the commonly used AES (Advanced Encryption Standard) which replaced the older DES (Data Encryption Standard).[15] Insecure symmetric algorithms include children's language tangling schemes such as Pig Latin or other cant, and all historical cryptographic schemes, however seriously intended, prior to the invention of the one-time pad
early in the 20th century.

In

colloquial use, the term "code" is often used to mean any method of encryption or concealment of meaning. However, in cryptography, code has a more specific meaning: the replacement of a unit of plaintext (i.e., a meaningful word or phrase) with a code word
(for example, "wallaby" replaces "attack at dawn"). A cypher, in contrast, is a scheme for changing or substituting an element below such a level (a letter, a syllable, or a pair of letters, etc.) to produce a cyphertext.

Cryptanalysis is the term used for the study of methods for obtaining the meaning of encrypted information without access to the key normally required to do so; i.e., it is the study of how to "crack" encryption algorithms or their implementations.

Some use the terms "cryptography" and "cryptology" interchangeably in English,

RFC 2828 advises that steganography is sometimes included in cryptology.[19]

The study of characteristics of languages that have some application in cryptography or cryptology (e.g. frequency data, letter combinations, universal patterns, etc.) is called cryptolinguistics. Cryptolingusitics is especially used in military intelligence applications for deciphering foreign communications.[20][21]

History

Before the modern era, cryptography focused on message confidentiality (i.e., encryption)—conversion of

secure computation
, among others.

Classic cryptography

Skytala stick with strip of paper wound around in spiral
Reconstructed ancient Greek scytale, an early cipher device

The main classical cipher types are transposition ciphers, which rearrange the order of letters in a message (e.g., 'hello world' becomes 'ehlol owrdl' in a trivially simple rearrangement scheme), and substitution ciphers, which systematically replace letters or groups of letters with other letters or groups of letters (e.g., 'fly at once' becomes 'gmz bu podf' by replacing each letter with the one following it in the Latin alphabet).[22] Simple versions of either have never offered much confidentiality from enterprising opponents. An early substitution cipher was the Caesar cipher, in which each letter in the plaintext was replaced by a letter some fixed number of positions further down the alphabet. Suetonius reports that Julius Caesar used it with a shift of three to communicate with his generals. Atbash is an example of an early Hebrew cipher. The earliest known use of cryptography is some carved ciphertext on stone in Egypt (c. 1900 BCE), but this may have been done for the amusement of literate observers rather than as a way of concealing information.

The

digital watermarks
to conceal information.

In India, the 2000-year-old

Kamasutra of Vātsyāyana speaks of two different kinds of ciphers called Kautiliyam and Mulavediya. In the Kautiliyam, the cipher letter substitutions are based on phonetic relations, such as vowels becoming consonants. In the Mulavediya, the cipher alphabet consists of pairing letters and using the reciprocal ones.[13]

In

Sassanid Persia, there were two secret scripts, according to the Muslim author Ibn al-Nadim: the šāh-dabīrīya (literally "King's script") which was used for official correspondence, and the rāz-saharīya which was used to communicate secret messages with other countries.[24]

David Kahn notes in The Codebreakers that modern cryptology originated among the Arabs, the first people to systematically document cryptanalytic methods.[25] Al-Khalil (717–786) wrote the Book of Cryptographic Messages, which contains the first use of permutations and combinations to list all possible Arabic words with and without vowels.[26]

Arabic text of a book by Al-Kindi
First page of a book by Al-Kindi which discusses encryption of messages

Ciphertexts produced by a

Arab mathematician and polymath Al-Kindi wrote a book on cryptography entitled Risalah fi Istikhraj al-Mu'amma (Manuscript for the Deciphering Cryptographic Messages), which described the first known use of frequency analysis cryptanalysis techniques.[27][28]

Henri II of France
French Ambassador to the Ottoman Empire
, after 1546, with partial decipherment

Language letter frequencies may offer little help for some extended historical encryption techniques such as homophonic cipher that tend to flatten the frequency distribution. For those ciphers, language letter group (or n-gram) frequencies may provide an attack.

Essentially all ciphers remained vulnerable to cryptanalysis using the frequency analysis technique until the development of the

cipher device, a wheel that implemented a partial realization of his invention. In the Vigenère cipher, a polyalphabetic cipher, encryption uses a key word, which controls letter substitution depending on which letter of the key word is used. In the mid-19th century Charles Babbage showed that the Vigenère cipher was vulnerable to Kasiski examination, but this was first published about ten years later by Friedrich Kasiski.[29]

Although frequency analysis can be a powerful and general technique against many ciphers, encryption has still often been effective in practice, as many a would-be cryptanalyst was unaware of the technique. Breaking a message without using frequency analysis essentially required knowledge of the cipher used and perhaps of the key involved, thus making espionage, bribery, burglary, defection, etc., more attractive approaches to the cryptanalytically uninformed. It was finally explicitly recognized in the 19th century that secrecy of a cipher's algorithm is not a sensible nor practical safeguard of message security; in fact, it was further realized that any adequate cryptographic scheme (including ciphers) should remain secure even if the adversary fully understands the cipher algorithm itself. Security of the key used should alone be sufficient for a good cipher to maintain confidentiality under an attack. This fundamental principle was first explicitly stated in 1883 by

Kerckhoffs's Principle; alternatively and more bluntly, it was restated by Claude Shannon, the inventor of information theory
and the fundamentals of theoretical cryptography, as Shannon's Maxim—'the enemy knows the system'.

Different physical devices and aids have been used to assist with ciphers. One of the earliest may have been the scytale of ancient Greece, a rod supposedly used by the Spartans as an aid for a transposition cipher. In medieval times, other aids were invented such as the

Bazeries around 1900). Many mechanical encryption/decryption devices were invented early in the 20th century, and several patented, among them rotor machines—famously including the Enigma machine used by the German government and military from the late 1920s and during World War II.[30] The ciphers implemented by better quality examples of these machine designs brought about a substantial increase in cryptanalytic difficulty after WWI.[31]

Early computer-era cryptography

Cryptanalysis of the new mechanical ciphering devices proved to be both difficult and laborious. In the United Kingdom, cryptanalytic efforts at

Lorenz SZ40/42
machine.

Extensive open academic research into cryptography is relatively recent, beginning in the mid-1970s. In the early 1970s

RSA algorithm was published in Martin Gardner's Scientific American column.[34] Since then, cryptography has become a widely used tool in communications, computer networks, and computer security
generally.

Some modern cryptographic techniques can only keep their keys secret if certain mathematical problems are

discrete logarithm problem is the basis for believing some other cryptosystems are secure, and again, there are related, less practical systems that are provably secure relative to the solvability or insolvability discrete log problem.[35]

As well as being aware of cryptographic history,

key lengths, the required key lengths are similarly advancing.[36] The potential impact of quantum computing are already being considered by some cryptographic system designers developing post-quantum cryptography.[when?] The announced imminence of small implementations of these machines may be making the need for preemptive caution rather more than merely speculative.[5]

Modern cryptography

Prior to the early 20th century, cryptography was mainly concerned with

quantum physics
.

Just as the development of digital computers and electronics helped in cryptanalysis, it made possible much more complex ciphers. Furthermore, computers allowed for the encryption of any kind of data representable in any binary format, unlike classical ciphers which only encrypted written language texts; this was new and significant. Computer use has thus supplanted linguistic cryptography, both for cipher design and cryptanalysis. Many computer ciphers can be characterized by their operation on

sequences (sometimes in groups or blocks), unlike classical and mechanical schemes, which generally manipulate traditional characters (i.e., letters and digits) directly. However, computers have also assisted cryptanalysis, which has compensated to some extent for increased cipher complexity. Nonetheless, good modern ciphers have stayed ahead of cryptanalysis; it is typically the case that use of a quality cipher is very efficient (i.e., fast and requiring few resources, such as memory or CPU capability), while breaking it requires an effort many orders of magnitude larger, and vastly larger than that required for any classical cipher, making cryptanalysis so inefficient and impractical as to be effectively impossible.

Symmetric-key cryptography

diagram showing encrypt with a key and decrypt process
Symmetric-key cryptography, where a single key is used for encryption and decryption

Symmetric-key cryptography refers to encryption methods in which both the sender and receiver share the same key (or, less commonly, in which their keys are different, but related in an easily computable way). This was the only kind of encryption publicly known until June 1976.[33]

logic diagram showing International Data Encryption Algorithm cypher process
One round (out of 8.5) of the IDEA cipher, used in most versions of PGP and OpenPGP compatible software for time-efficient encryption of messages

Symmetric key ciphers are implemented as either

stream ciphers
. A block cipher enciphers input in blocks of plaintext as opposed to individual characters, the input form used by a stream cipher.

The

e-mail privacy[40] and secure remote access.[41] Many other block ciphers have been designed and released, with considerable variation in quality. Many, even some designed by capable practitioners, have been thoroughly broken, such as FEAL.[5][42]

Stream ciphers, in contrast to the 'block' type, create an arbitrarily long stream of key material, which is combined with the plaintext bit-by-bit or character-by-character, somewhat like the one-time pad. In a stream cipher, the output stream is created based on a hidden internal state that changes as the cipher operates. That internal state is initially set up using the secret key material. RC4 is a widely used stream cipher.[5] Block ciphers can be used as stream ciphers by generating blocks of a keystream (in place of a Pseudorandom number generator) and applying an XOR operation to each bit of the plaintext with each bit of the keystream.[43]

Keccak would be the new SHA-3 hash algorithm.[46]
Unlike block and stream ciphers that are invertible, cryptographic hash functions produce a hashed output that cannot be used to retrieve the original input data. Cryptographic hash functions are used to verify the authenticity of data retrieved from an untrusted source or to add a layer of security.

Public-key cryptography

diagram of Public-key cryptography showing public key and private key
Public-key cryptography, where different keys are used for encryption and decryption.

Symmetric-key cryptosystems use the same key for encryption and decryption of a message, although a message or group of messages can have a different key than others. A significant disadvantage of symmetric ciphers is the key management necessary to use them securely. Each distinct pair of communicating parties must, ideally, share a different key, and perhaps for each ciphertext exchanged as well. The number of keys required increases as the square of the number of network members, which very quickly requires complex key management schemes to keep them all consistent and secret.

headshots of Whitfield Diffie and Martin Hellman
Whitfield Diffie and Martin Hellman, authors of the first published paper on public-key cryptography.

In a groundbreaking 1976 paper, Whitfield Diffie and Martin Hellman proposed the notion of public-key (also, more generally, called asymmetric key) cryptography in which two different but mathematically related keys are used—a public key and a private key.[47] A public key system is so constructed that calculation of one key (the 'private key') is computationally infeasible from the other (the 'public key'), even though they are necessarily related. Instead, both keys are generated secretly, as an interrelated pair.[48] The historian David Kahn described public-key cryptography as "the most revolutionary new concept in the field since polyalphabetic substitution emerged in the Renaissance".[49]

In public-key cryptosystems, the public key may be freely distributed, while its paired private key must remain secret. In a public-key encryption system, the public key is used for encryption, while the private or secret key is used for decryption. While Diffie and Hellman could not find such a system, they showed that public-key cryptography was indeed possible by presenting the Diffie–Hellman key exchange protocol, a solution that is now widely used in secure communications to allow two parties to secretly agree on a shared encryption key.[33] The

public key certificates.[50]

Diffie and Hellman's publication sparked widespread academic efforts in finding a practical public-key encryption system. This race was finally won in 1978 by

Len Adleman, whose solution has since become known as the RSA algorithm.[51]

The

elliptic curve techniques
.

A document published in 1997 by the Government Communications Headquarters (GCHQ), a British intelligence organization, revealed that cryptographers at GCHQ had anticipated several academic developments.[52] Reportedly, around 1970, James H. Ellis had conceived the principles of asymmetric key cryptography. In 1973, Clifford Cocks invented a solution that was very similar in design rationale to RSA.[52][53] In 1974, Malcolm J. Williamson is claimed to have developed the Diffie–Hellman key exchange.[54]

In this example the message is only signed and not encrypted. 1) Alice signs a message with her private key. 2) Bob can verify that Alice sent the message and that the message has not been modified.

Public-key cryptography is also used for implementing

VPNs, etc.).[42]

Public-key algorithms are most often based on the

elliptic curve cryptography is based on number theoretic problems involving elliptic curves. Because of the difficulty of the underlying problems, most public-key algorithms involve operations such as modular multiplication and exponentiation, which are much more computationally expensive than the techniques used in most block ciphers, especially with typical key sizes. As a result, public-key cryptosystems are commonly hybrid cryptosystems, in which a fast high-quality symmetric-key encryption algorithm is used for the message itself, while the relevant symmetric key is sent with the message, but encrypted using a public-key algorithm. Similarly, hybrid signature schemes are often used, in which a cryptographic hash function is computed, and only the resulting hash is digitally signed.[5]

Cryptographic hash functions

Cryptographic hash functions are functions that take a variable-length input and return a fixed-length output, which can be used in, for example, a digital signature. For a hash function to be secure, it must be difficult to compute two inputs that hash to the same value (

Keccak would be the new SHA-3 hash algorithm.[46]
Unlike block and stream ciphers that are invertible, cryptographic hash functions produce a hashed output that cannot be used to retrieve the original input data. Cryptographic hash functions are used to verify the authenticity of data retrieved from an untrusted source or to add a layer of security.

Cryptanalysis

Cipher Bureau, for 7 years before the war, and subsequent decryption at Bletchley Park, was important to Allied victory.[13]

The goal of cryptanalysis is to find some weakness or insecurity in a cryptographic scheme, thus permitting its subversion or evasion.

It is a common misconception that every encryption method can be broken. In connection with his WWII work at

exponentially
dependent on the key size, as compared to the effort needed to make use of the cipher. In such cases, effective security could be achieved if it is proven that the effort required (i.e., "work factor", in Shannon's terms) is beyond the ability of any adversary. This means it must be shown that no efficient method (as opposed to the time-consuming brute force method) can be found to break the cipher. Since no such proof has been found to date, the one-time-pad remains the only theoretically unbreakable cipher. Although well-implemented one-time-pad encryption cannot be broken, traffic analysis is still possible.

There are a wide variety of cryptanalytic attacks, and they can be classified in any of several ways. A common distinction turns on what Eve (an attacker) knows and what capabilities are available. In a ciphertext-only attack, Eve has access only to the ciphertext (good modern cryptosystems are usually effectively immune to ciphertext-only attacks). In a known-plaintext attack, Eve has access to a ciphertext and its corresponding plaintext (or to many such pairs). In a chosen-plaintext attack, Eve may choose a plaintext and learn its corresponding ciphertext (perhaps many times); an example is gardening, used by the British during WWII. In a chosen-ciphertext attack, Eve may be able to choose ciphertexts and learn their corresponding plaintexts.[5] Finally in a man-in-the-middle attack Eve gets in between Alice (the sender) and Bob (the recipient), accesses and modifies the traffic and then forward it to the recipient.[56] Also important, often overwhelmingly so, are mistakes (generally in the design or use of one of the protocols involved).

Cryptanalysis of symmetric-key ciphers typically involves looking for attacks against the block ciphers or stream ciphers that are more efficient than any attack that could be against a perfect cipher. For example, a simple brute force attack against DES requires one known plaintext and 255 decryptions, trying approximately half of the possible keys, to reach a point at which chances are better than even that the key sought will have been found. But this may not be enough assurance; a linear cryptanalysis attack against DES requires 243 known plaintexts (with their corresponding ciphertexts) and approximately 243 DES operations.[57] This is a considerable improvement over brute force attacks.

Public-key algorithms are based on the computational difficulty of various problems. The most famous of these are the difficulty of

elliptic curve-based
version of discrete logarithm are much more time-consuming than the best-known algorithms for factoring, at least for problems of more or less equivalent size. Thus, to achieve an equivalent strength of encryption, techniques that depend upon the difficulty of factoring large composite numbers, such as the RSA cryptosystem, require larger keys than elliptic curve techniques. For this reason, public-key cryptosystems based on elliptic curves have become popular since their invention in the mid-1990s.

While pure cryptanalysis uses weaknesses in the algorithms themselves, other attacks on cryptosystems are based on actual use of the algorithms in real devices, and are called

rubber-hose cryptanalysis
or torture) are usually employed due to being more cost-effective and feasible to perform in a reasonable amount of time compared to pure cryptanalysis by a high margin.

Cryptographic primitives

Much of the theoretical work in cryptography concerns

pseudorandom functions, one-way functions
, etc.

Cryptosystems

One or more cryptographic primitives are often used to develop a more complex algorithm, called a cryptographic system, or cryptosystem. Cryptosystems (e.g.,

random oracle model). Cryptosystems use the properties of the underlying cryptographic primitives to support the system's security properties. As the distinction between primitives and cryptosystems is somewhat arbitrary, a sophisticated cryptosystem can be derived from a combination of several more primitive cryptosystems. In many cases, the cryptosystem's structure involves back and forth communication among two or more parties in space (e.g., between the sender of a secure message and its receiver) or across time (e.g., cryptographically protected backup data). Such cryptosystems are sometimes called cryptographic protocols
.

Some widely known cryptosystems include RSA, Schnorr signature, ElGamal encryption, and Pretty Good Privacy (PGP). More complex cryptosystems include electronic cash[59] systems, signcryption systems, etc. Some more 'theoretical'[clarification needed] cryptosystems include interactive proof systems,[60] (like zero-knowledge proofs)[61] and systems for secret sharing.[62][63]

Lightweight cryptography

Lightweight cryptography (LWC) concerns cryptographic algorithms developed for a strictly constrained environment. The growth of Internet of Things (IoT) has spiked research into the development of lightweight algorithms that are better suited for the environment. An IoT environment requires strict constraints on power consumption, processing power, and security.[64] Algorithms such as PRESENT, AES, and SPECK are examples of the many LWC algorithms that have been developed to achieve the standard set by the National Institute of Standards and Technology.[65]

Applications

Cryptography is widely used on the internet to help protect user-data and prevent eavesdropping. To ensure secrecy during transmission, many systems use private key cryptography to protect transmitted information. With public-key systems, one can maintain secrecy without a master key or a large number of keys.[66] But, some algorithms like BitLocker and VeraCrypt are generally not private-public key cryptography. For example, Veracrypt uses a password hash to generate the single private key. However, it can be configured to run in public-private key systems. The C++ opensource encryption library OpenSSL provides free and opensource encryption software and tools. The most commonly used encryption cipher suit is AES,[67] as it has hardware acceleration for all x86 based processors that has AES-NI. A close contender is ChaCha20-Poly1305, which is a stream cipher, however it is commonly used for mobile devices as they are ARM based which does not feature AES-NI instruction set extension.

Cybersecurity

Cryptography can be used to secure communications by encrypting them. Websites use encryption via

Signal and Telegram.[68]

Operating systems use encryption to keep passwords secret, conceal parts of the system, and ensure that software updates are truly from the system maker.[68] Instead of storing plaintext passwords, computer systems store hashes thereof; then, when a user logs in, the system passes the given password through a cryptographic hash function and compares it to the hashed value on file. In this manner, neither the system nor an attacker has at any point access to the password in plaintext.[68]

Encryption is sometimes used to encrypt one's entire drive. For example, University College London has implemented BitLocker (a program by Microsoft) to render drive data opaque without users logging in.[68]

Cryptocurrencies and cryptoeconomics

Cryptographic techniques enable

.

Prohibitions

Cryptography has long been of interest to intelligence gathering and law enforcement agencies.[9] Secret communications may be criminal or even treasonous.[citation needed] Because of its facilitation of privacy, and the diminution of privacy attendant on its prohibition, cryptography is also of considerable interest to civil rights supporters. Accordingly, there has been a history of controversial legal issues surrounding cryptography, especially since the advent of inexpensive computers has made widespread access to high-quality cryptography possible.

In some countries, even the domestic use of cryptography is, or has been, restricted. Until 1999, France significantly restricted the use of cryptography domestically, though it has since relaxed many of these rules. In

Iran, a license is still required to use cryptography.[7] Many countries have tight restrictions on the use of cryptography. Among the more restrictive are laws in Belarus, Kazakhstan, Mongolia, Pakistan, Singapore, Tunisia, and Vietnam.[69]

In the United States, cryptography is legal for domestic use, but there has been much conflict over legal issues related to cryptography.[9] One particularly important issue has been the export of cryptography and cryptographic software and hardware. Probably because of the importance of cryptanalysis in World War II and an expectation that cryptography would continue to be important for national security, many Western governments have, at some point, strictly regulated export of cryptography. After World War II, it was illegal in the US to sell or distribute encryption technology overseas; in fact, encryption was designated as auxiliary military equipment and put on the United States Munitions List.[70] Until the development of the personal computer, asymmetric key algorithms (i.e., public key techniques), and the Internet, this was not especially problematic. However, as the Internet grew and computers became more widely available, high-quality encryption techniques became well known around the globe.

Export controls

In the 1990s, there were several challenges to US export regulation of cryptography. After the

free speech grounds. The 1995 case Bernstein v. United States ultimately resulted in a 1999 decision that printed source code for cryptographic algorithms and systems was protected as free speech by the United States Constitution.[73]

In 1996, thirty-nine countries signed the

E-mail client programs similarly can transmit and receive emails via TLS, and can send and receive email encrypted with S/MIME. Many Internet users do not realize that their basic application software contains such extensive cryptosystems. These browsers and email programs are so ubiquitous that even governments whose intent is to regulate civilian use of cryptography generally do not find it practical to do much to control distribution or use of cryptography of this quality, so even when such laws are in force, actual enforcement is often effectively impossible.[citation needed
]

NSA involvement

NSA headquarters in Fort Meade, Maryland

Another contentious issue connected to cryptography in the United States is the influence of the

National Bureau of Standards as a possible Federal Standard for cryptography.[76] DES was designed to be resistant to differential cryptanalysis,[77] a powerful and general cryptanalytic technique known to the NSA and IBM, that became publicly known only when it was rediscovered in the late 1980s.[78] According to Steven Levy, IBM discovered differential cryptanalysis,[72]
but kept the technique secret at the NSA's request. The technique became publicly known only when Biham and Shamir re-discovered and announced it some years later. The entire affair illustrates the difficulty of determining what resources and knowledge an attacker might actually have.

Another instance of the NSA's involvement was the 1993

Digital rights management

Cryptography is central to digital rights management (DRM), a group of techniques for technologically controlling use of

EU Copyright Directive. Similar restrictions are called for by treaties signed by World Intellectual Property Organization
member-states.

The

free speech
.

Forced disclosure of encryption keys

In the United Kingdom, the Regulation of Investigatory Powers Act gives UK police the powers to force suspects to decrypt files or hand over passwords that protect encryption keys. Failure to comply is an offense in its own right, punishable on conviction by a two-year jail sentence or up to five years in cases involving national security.[8] Successful prosecutions have occurred under the Act; the first, in 2009,[82] resulted in a term of 13 months' imprisonment.[83] Similar forced disclosure laws in Australia, Finland, France, and India compel individual suspects under investigation to hand over encryption keys or passwords during a criminal investigation.

In the United States, the federal criminal case of United States v. Fricosu addressed whether a search warrant can compel a person to reveal an encryption passphrase or password.[84] The Electronic Frontier Foundation (EFF) argued that this is a violation of the protection from self-incrimination given by the Fifth Amendment.[85] In 2012, the court ruled that under the All Writs Act, the defendant was required to produce an unencrypted hard drive for the court.[86]

In many jurisdictions, the legal status of forced disclosure remains unclear.

The 2016

FBI–Apple encryption dispute
concerns the ability of courts in the United States to compel manufacturers' assistance in unlocking cell phones whose contents are cryptographically protected.

As a potential counter-measure to forced disclosure some cryptographic software supports plausible deniability, where the encrypted data is indistinguishable from unused random data (for example such as that of a drive which has been securely wiped).

See also

References

  1. A Greek-English Lexicon. Oxford University Press
    .
  2. ^ Rivest, Ronald L. (1990). "Cryptography". In J. Van Leeuwen (ed.). Handbook of Theoretical Computer Science. Vol. 1. Elsevier.
  3. ^ Bellare, Mihir; Rogaway, Phillip (21 September 2005). "Introduction". Introduction to Modern Cryptography. p. 10.
  4. from the original on 27 August 2022. Retrieved 20 September 2022.
  5. ^ .
  6. ^ a b Biggs, Norman (2008). Codes: An introduction to Information Communication and Cryptography. Springer. p. 171.
  7. ^ a b "Overview per country". Crypto Law Survey. February 2013. Archived from the original on 1 January 2013. Retrieved 26 March 2015.
  8. ^ a b "UK Data Encryption Disclosure Law Takes Effect". PC World. 1 October 2007. Archived from the original on 20 January 2012. Retrieved 26 March 2015.
  9. ^ a b c d Ranger, Steve (24 March 2015). "The undercover war on your internet secrets: How online surveillance cracked our trust in the web". TechRepublic. Archived from the original on 12 June 2016. Retrieved 12 June 2016.
  10. ^ a b Doctorow, Cory (2 May 2007). "Digg users revolt over AACS key". Boing Boing. Archived from the original on 12 May 2015. Retrieved 26 March 2015.
  11. JSTOR 2928778
    .
  12. .
  13. ^ .
  14. ^ "An Introduction to Modern Cryptosystems". Archived from the original on 17 November 2015. Retrieved 12 October 2015.
  15. S2CID 17915038
    .
  16. ^ "cryptology | Britannica". www.britannica.com. Archived from the original on 10 July 2022. Retrieved 22 June 2022.
  17. . Retrieved 26 March 2015.
  18. from the original on 18 April 2015. Retrieved 26 March 2015.
  19. ^ Military.com (13 May 2021). "What's a Cryptologic Linguist?". Military.com. Retrieved 17 July 2023.
  20. .
  21. from the original on 26 February 2022. Retrieved 26 February 2022.
  22. .
  23. ^ electricpulp.com. "CODES – Encyclopaedia Iranica". www.iranicaonline.org. Archived from the original on 5 March 2017. Retrieved 4 March 2017.
  24. from the original on 1 July 2023. Retrieved 16 October 2020.
  25. .
  26. .
  27. ^ .
  28. .
  29. .
  30. .
  31. ^ "The Legacy of DES – Schneier on Security". www.schneier.com. Archived from the original on 23 February 2022. Retrieved 26 January 2022.
  32. ^ (PDF) from the original on 3 December 2017. Retrieved 16 November 2015.
  33. .
  34. ^ Cryptography: Theory and Practice, Third Edition (Discrete Mathematics and Its Applications), 2005, by Douglas R. Stinson, Chapman and Hall/CRC
  35. Fortify. Archived
    from the original on 24 September 2015. Retrieved 26 March 2015.
  36. from the original on 19 April 2022. Retrieved 19 April 2022.
  37. ^ "FIPS PUB 197: The official Advanced Encryption Standard" (PDF). Computer Security Resource Center. National Institute of Standards and Technology. Archived from the original (PDF) on 7 April 2015. Retrieved 26 March 2015.
  38. ^ "NCUA letter to credit unions" (PDF). National Credit Union Administration. July 2004. Archived (PDF) from the original on 12 September 2014. Retrieved 26 March 2015.
  39. from the original on 15 March 2015. Retrieved 26 March 2015.
  40. ^ Golen, Pawel (19 July 2002). "SSH". WindowSecurity. Archived from the original on 29 October 2009. Retrieved 26 March 2015.
  41. ^ .
  42. .
  43. from the original on 10 July 2022. Retrieved 26 August 2022.
  44. ^ a b "Announcing Request for Candidate Algorithm Nominations for a New Cryptographic Hash Algorithm (SHA–3) Family" (PDF). Federal Register. 72 (212). 2 November 2007. Archived (PDF) from the original on 28 February 2008.
  45. ^ a b "NIST Selects Winner of Secure Hash Algorithm (SHA-3) Competition". NIST. National Institute of Standards and Technology. 2 October 2012. Archived from the original on 2 April 2015. Retrieved 26 March 2015.
  46. S2CID 13210741
    .
  47. ^ Ralph Merkle was working on similar ideas at the time and encountered publication delays, and Hellman has suggested that the term used should be Diffie–Hellman–Merkle asymmetric key cryptography.
  48. JSTOR 20040343
    .
  49. ^ "Using Client-Certificate based authentication with NGINX on Ubuntu". SSLTrust. Archived from the original on 26 August 2019. Retrieved 13 June 2019.
  50. Mathematical recreations
    column
  51. ^ a b Wayner, Peter (24 December 1997). "British Document Outlines Early Encryption Discovery". The New York Times. Archived from the original on 27 June 2017. Retrieved 26 March 2015.
  52. ^ Cocks, Clifford (20 November 1973). "A Note on 'Non-Secret Encryption'" (PDF). CESG Research Report. Archived (PDF) from the original on 27 July 2011. Retrieved 22 July 2009.
  53. .
  54. .
  55. ^ "An Example of a Man-in-the-middle Attack Against Server Authenticated SSL-sessions" (PDF). Archived (PDF) from the original on 3 June 2016. Retrieved 13 October 2015.
  56. .
  57. ^ Song, Dawn; Wagner, David A.; Tian, Xuqing (2001). "Timing Analysis of Keystrokes and Timing Attacks on SSH" (PDF). Tenth USENIX Security Symposium.
  58. ISBN 978-3-540-57766-9. Archived from the original
    on 26 July 2011.
  59. .
  60. .
  61. ^ Blakley, G. (June 1979). "Safeguarding cryptographic keys". Proceedings of AFIPS 1979. 48: 313–317.
  62. S2CID 16321225
    .
  63. from the original on 24 April 2021. Retrieved 24 April 2021.
  64. .
  65. ^ Cohen, Fred (1995). "2.4 – Applications of Cryptography". all.net. Archived from the original on 24 August 1999. Retrieved 21 December 2021.
  66. ^ "4 Common Encryption Methods to Shield Sensitive Data From Prying Eyes". GetApp. Archived from the original on 14 May 2022. Retrieved 14 May 2022.
  67. ^ a b c d e Chamberlain, Austin (12 March 2017). "Applications of Cryptography | UCL Risky Business". blogs.ucl.ac.uk. Archived from the original on 26 February 2018. Retrieved 21 December 2021.
  68. RSA Laboratories. Archived
    from the original on 16 April 2015. Retrieved 26 March 2015.
  69. ^ Rosenoer, Jonathan (1995). "Cryptography & Speech". CyberLaw. Archived from the original on 1 December 2005. Retrieved 23 June 2006.
  70. ^ "Case Closed on Zimmermann PGP Investigation". IEEE Computer Society's Technical Committee on Security and Privacy. 14 February 1996. Archived from the original on 11 June 2010. Retrieved 26 March 2015.
  71. ^
    OCLC 244148644
    .
  72. ^ "Bernstein v USDOJ". Electronic Privacy Information Center. United States Court of Appeals for the Ninth Circuit. 6 May 1999. Archived from the original on 13 August 2009. Retrieved 26 March 2015.
  73. ^ "Dual-use List – Category 5 – Part 2 – "Information Security"" (PDF). Wassenaar Arrangement. Archived from the original on 26 September 2018. Retrieved 26 March 2015.
  74. RSA Laboratories. Archived
    from the original on 31 March 2015. Retrieved 26 March 2015.
  75. ^ Schneier, Bruce (15 June 2000). "The Data Encryption Standard (DES)". Crypto-Gram. Archived from the original on 2 January 2010. Retrieved 26 March 2015.
  76. from the original on 4 March 2016. Retrieved 26 March 2015.
  77. .
  78. ^ "The Digital Millennium Copyright Act of 1998" (PDF). United States Copyright Office. Archived (PDF) from the original on 8 August 2007. Retrieved 26 March 2015.
  79. ^ Ferguson, Niels (15 August 2001). "Censorship in action: why I don't publish my HDCP results". Archived from the original on 1 December 2001. Retrieved 16 February 2009.
  80. ^ Schneier, Bruce (6 August 2001). "Arrest of Computer Researcher Is Arrest of First Amendment Rights". InternetWeek. Archived from the original on 7 March 2017. Retrieved 7 March 2017.
  81. ^ Williams, Christopher (11 August 2009). "Two convicted for refusal to decrypt data". The Register. Archived from the original on 17 March 2015. Retrieved 26 March 2015.
  82. ^ Williams, Christopher (24 November 2009). "UK jails schizophrenic for refusal to decrypt files". The Register. Archived from the original on 26 March 2015. Retrieved 26 March 2015.
  83. ^ Ingold, John (4 January 2012). "Password case reframes Fifth Amendment rights in context of digital world". The Denver Post. Archived from the original on 2 April 2015. Retrieved 26 March 2015.
  84. ^ Leyden, John (13 July 2011). "US court test for rights not to hand over crypto keys". The Register. Archived from the original on 24 October 2014. Retrieved 26 March 2015.
  85. ^ "Order Granting Application under the All Writs Act Requiring Defendant Fricosu to Assist in the Execution of Previously Issued Search Warrants" (PDF). United States District Court for the District of Colorado. Archived (PDF) from the original on 9 June 2021. Retrieved 26 March 2015.

Further reading