Cryptography
This article needs additional citations for verification. (March 2021) |
Cryptography, or cryptology (from
Cryptography prior to the modern age was effectively synonymous with
Modern cryptography is heavily based on
The growth of cryptographic technology has raised a number of legal issues in the Information Age. Cryptography's potential for use as a tool for espionage and sedition has led many governments to classify it as a weapon and to limit or even prohibit its use and export.[7] In some jurisdictions where the use of cryptography is legal, laws permit investigators to compel the disclosure of encryption keys for documents relevant to an investigation.[8][9] Cryptography also plays a major role in digital rights management and copyright infringement disputes with regard to digital media.[10]
Terminology
The first use of the term "cryptograph" (as opposed to "cryptogram") dates back to the 19th century—originating from "The Gold-Bug", a story by Edgar Allan Poe.[11][12]
Until modern times, cryptography referred almost exclusively to "encryption", which is the process of converting ordinary information (called plaintext) into an unintelligible form (called ciphertext).[13] Decryption is the reverse, in other words, moving from the unintelligible ciphertext back to plaintext. A cipher (or cypher) is a pair of algorithms that carry out the encryption and the reversing decryption. The detailed operation of a cipher is controlled both by the algorithm and, in each instance, by a "key". The key is a secret (ideally known only to the communicants), usually a string of characters (ideally short so it can be remembered by the user), which is needed to decrypt the ciphertext. In formal mathematical terms, a "cryptosystem" is the ordered list of elements of finite possible plaintexts, finite possible cyphertexts, finite possible keys, and the encryption and decryption algorithms that correspond to each key. Keys are important both formally and in actual practice, as ciphers without variable keys can be trivially broken with only the knowledge of the cipher used and are therefore useless (or even counter-productive) for most purposes. Historically, ciphers were often used directly for encryption or decryption without additional procedures such as authentication or integrity checks.
There are two main types of cryptosystems:
In
Cryptanalysis is the term used for the study of methods for obtaining the meaning of encrypted information without access to the key normally required to do so; i.e., it is the study of how to "crack" encryption algorithms or their implementations.
Some use the terms "cryptography" and "cryptology" interchangeably in English,
The study of characteristics of languages that have some application in cryptography or cryptology (e.g. frequency data, letter combinations, universal patterns, etc.) is called cryptolinguistics. Cryptolingusitics is especially used in military intelligence applications for deciphering foreign communications.[20][21]
History
Before the modern era, cryptography focused on message confidentiality (i.e., encryption)—conversion of
Classic cryptography
The main classical cipher types are transposition ciphers, which rearrange the order of letters in a message (e.g., 'hello world' becomes 'ehlol owrdl' in a trivially simple rearrangement scheme), and substitution ciphers, which systematically replace letters or groups of letters with other letters or groups of letters (e.g., 'fly at once' becomes 'gmz bu podf' by replacing each letter with the one following it in the Latin alphabet).[22] Simple versions of either have never offered much confidentiality from enterprising opponents. An early substitution cipher was the Caesar cipher, in which each letter in the plaintext was replaced by a letter some fixed number of positions further down the alphabet. Suetonius reports that Julius Caesar used it with a shift of three to communicate with his generals. Atbash is an example of an early Hebrew cipher. The earliest known use of cryptography is some carved ciphertext on stone in Egypt (c. 1900 BCE), but this may have been done for the amusement of literate observers rather than as a way of concealing information.
The
In India, the 2000-year-old
In
David Kahn notes in The Codebreakers that modern cryptology originated among the Arabs, the first people to systematically document cryptanalytic methods.[25] Al-Khalil (717–786) wrote the Book of Cryptographic Messages, which contains the first use of permutations and combinations to list all possible Arabic words with and without vowels.[26]
Ciphertexts produced by a
Language letter frequencies may offer little help for some extended historical encryption techniques such as homophonic cipher that tend to flatten the frequency distribution. For those ciphers, language letter group (or n-gram) frequencies may provide an attack.
Essentially all ciphers remained vulnerable to cryptanalysis using the frequency analysis technique until the development of the
Although frequency analysis can be a powerful and general technique against many ciphers, encryption has still often been effective in practice, as many a would-be cryptanalyst was unaware of the technique. Breaking a message without using frequency analysis essentially required knowledge of the cipher used and perhaps of the key involved, thus making espionage, bribery, burglary, defection, etc., more attractive approaches to the cryptanalytically uninformed. It was finally explicitly recognized in the 19th century that secrecy of a cipher's algorithm is not a sensible nor practical safeguard of message security; in fact, it was further realized that any adequate cryptographic scheme (including ciphers) should remain secure even if the adversary fully understands the cipher algorithm itself. Security of the key used should alone be sufficient for a good cipher to maintain confidentiality under an attack. This fundamental principle was first explicitly stated in 1883 by
Different physical devices and aids have been used to assist with ciphers. One of the earliest may have been the scytale of ancient Greece, a rod supposedly used by the Spartans as an aid for a transposition cipher. In medieval times, other aids were invented such as the
Early computer-era cryptography
Cryptanalysis of the new mechanical ciphering devices proved to be both difficult and laborious. In the United Kingdom, cryptanalytic efforts at
Extensive open academic research into cryptography is relatively recent, beginning in the mid-1970s. In the early 1970s
Some modern cryptographic techniques can only keep their keys secret if certain mathematical problems are
As well as being aware of cryptographic history,
Modern cryptography
Prior to the early 20th century, cryptography was mainly concerned with
Just as the development of digital computers and electronics helped in cryptanalysis, it made possible much more complex ciphers. Furthermore, computers allowed for the encryption of any kind of data representable in any binary format, unlike classical ciphers which only encrypted written language texts; this was new and significant. Computer use has thus supplanted linguistic cryptography, both for cipher design and cryptanalysis. Many computer ciphers can be characterized by their operation on
Symmetric-key cryptography
Symmetric-key cryptography refers to encryption methods in which both the sender and receiver share the same key (or, less commonly, in which their keys are different, but related in an easily computable way). This was the only kind of encryption publicly known until June 1976.[33]
Symmetric key ciphers are implemented as either
The
Stream ciphers, in contrast to the 'block' type, create an arbitrarily long stream of key material, which is combined with the plaintext bit-by-bit or character-by-character, somewhat like the one-time pad. In a stream cipher, the output stream is created based on a hidden internal state that changes as the cipher operates. That internal state is initially set up using the secret key material. RC4 is a widely used stream cipher.[5] Block ciphers can be used as stream ciphers by generating blocks of a keystream (in place of a Pseudorandom number generator) and applying an XOR operation to each bit of the plaintext with each bit of the keystream.[43]
Public-key cryptography
Symmetric-key cryptosystems use the same key for encryption and decryption of a message, although a message or group of messages can have a different key than others. A significant disadvantage of symmetric ciphers is the key management necessary to use them securely. Each distinct pair of communicating parties must, ideally, share a different key, and perhaps for each ciphertext exchanged as well. The number of keys required increases as the square of the number of network members, which very quickly requires complex key management schemes to keep them all consistent and secret.
In a groundbreaking 1976 paper, Whitfield Diffie and Martin Hellman proposed the notion of public-key (also, more generally, called asymmetric key) cryptography in which two different but mathematically related keys are used—a public key and a private key.[47] A public key system is so constructed that calculation of one key (the 'private key') is computationally infeasible from the other (the 'public key'), even though they are necessarily related. Instead, both keys are generated secretly, as an interrelated pair.[48] The historian David Kahn described public-key cryptography as "the most revolutionary new concept in the field since polyalphabetic substitution emerged in the Renaissance".[49]
In public-key cryptosystems, the public key may be freely distributed, while its paired private key must remain secret. In a public-key encryption system, the public key is used for encryption, while the private or secret key is used for decryption. While Diffie and Hellman could not find such a system, they showed that public-key cryptography was indeed possible by presenting the Diffie–Hellman key exchange protocol, a solution that is now widely used in secure communications to allow two parties to secretly agree on a shared encryption key.[33] The
Diffie and Hellman's publication sparked widespread academic efforts in finding a practical public-key encryption system. This race was finally won in 1978 by
The
A document published in 1997 by the Government Communications Headquarters (GCHQ), a British intelligence organization, revealed that cryptographers at GCHQ had anticipated several academic developments.[52] Reportedly, around 1970, James H. Ellis had conceived the principles of asymmetric key cryptography. In 1973, Clifford Cocks invented a solution that was very similar in design rationale to RSA.[52][53] In 1974, Malcolm J. Williamson is claimed to have developed the Diffie–Hellman key exchange.[54]
Public-key cryptography is also used for implementing
Public-key algorithms are most often based on the
Cryptographic hash functions
Cryptographic hash functions are functions that take a variable-length input and return a fixed-length output, which can be used in, for example, a digital signature. For a hash function to be secure, it must be difficult to compute two inputs that hash to the same value (
Cryptanalysis
The goal of cryptanalysis is to find some weakness or insecurity in a cryptographic scheme, thus permitting its subversion or evasion.
It is a common misconception that every encryption method can be broken. In connection with his WWII work at
There are a wide variety of cryptanalytic attacks, and they can be classified in any of several ways. A common distinction turns on what Eve (an attacker) knows and what capabilities are available. In a ciphertext-only attack, Eve has access only to the ciphertext (good modern cryptosystems are usually effectively immune to ciphertext-only attacks). In a known-plaintext attack, Eve has access to a ciphertext and its corresponding plaintext (or to many such pairs). In a chosen-plaintext attack, Eve may choose a plaintext and learn its corresponding ciphertext (perhaps many times); an example is gardening, used by the British during WWII. In a chosen-ciphertext attack, Eve may be able to choose ciphertexts and learn their corresponding plaintexts.[5] Finally in a man-in-the-middle attack Eve gets in between Alice (the sender) and Bob (the recipient), accesses and modifies the traffic and then forward it to the recipient.[56] Also important, often overwhelmingly so, are mistakes (generally in the design or use of one of the protocols involved).
Cryptanalysis of symmetric-key ciphers typically involves looking for attacks against the block ciphers or stream ciphers that are more efficient than any attack that could be against a perfect cipher. For example, a simple brute force attack against DES requires one known plaintext and 255 decryptions, trying approximately half of the possible keys, to reach a point at which chances are better than even that the key sought will have been found. But this may not be enough assurance; a linear cryptanalysis attack against DES requires 243 known plaintexts (with their corresponding ciphertexts) and approximately 243 DES operations.[57] This is a considerable improvement over brute force attacks.
Public-key algorithms are based on the computational difficulty of various problems. The most famous of these are the difficulty of
While pure cryptanalysis uses weaknesses in the algorithms themselves, other attacks on cryptosystems are based on actual use of the algorithms in real devices, and are called
Cryptographic primitives
Much of the theoretical work in cryptography concerns
Cryptosystems
One or more cryptographic primitives are often used to develop a more complex algorithm, called a cryptographic system, or cryptosystem. Cryptosystems (e.g.,
Some widely known cryptosystems include RSA, Schnorr signature, ElGamal encryption, and Pretty Good Privacy (PGP). More complex cryptosystems include electronic cash[59] systems, signcryption systems, etc. Some more 'theoretical'[clarification needed] cryptosystems include interactive proof systems,[60] (like zero-knowledge proofs)[61] and systems for secret sharing.[62][63]
Lightweight cryptography
Lightweight cryptography (LWC) concerns cryptographic algorithms developed for a strictly constrained environment. The growth of Internet of Things (IoT) has spiked research into the development of lightweight algorithms that are better suited for the environment. An IoT environment requires strict constraints on power consumption, processing power, and security.[64] Algorithms such as PRESENT, AES, and SPECK are examples of the many LWC algorithms that have been developed to achieve the standard set by the National Institute of Standards and Technology.[65]
Applications
This section needs expansion. You can help by adding to it. (December 2021) |
Cryptography is widely used on the internet to help protect user-data and prevent eavesdropping. To ensure secrecy during transmission, many systems use private key cryptography to protect transmitted information. With public-key systems, one can maintain secrecy without a master key or a large number of keys.[66] But, some algorithms like BitLocker and VeraCrypt are generally not private-public key cryptography. For example, Veracrypt uses a password hash to generate the single private key. However, it can be configured to run in public-private key systems. The C++ opensource encryption library OpenSSL provides free and opensource encryption software and tools. The most commonly used encryption cipher suit is AES,[67] as it has hardware acceleration for all x86 based processors that has AES-NI. A close contender is ChaCha20-Poly1305, which is a stream cipher, however it is commonly used for mobile devices as they are ARM based which does not feature AES-NI instruction set extension.
Cybersecurity
Cryptography can be used to secure communications by encrypting them. Websites use encryption via
Operating systems use encryption to keep passwords secret, conceal parts of the system, and ensure that software updates are truly from the system maker.[68] Instead of storing plaintext passwords, computer systems store hashes thereof; then, when a user logs in, the system passes the given password through a cryptographic hash function and compares it to the hashed value on file. In this manner, neither the system nor an attacker has at any point access to the password in plaintext.[68]
Encryption is sometimes used to encrypt one's entire drive. For example, University College London has implemented BitLocker (a program by Microsoft) to render drive data opaque without users logging in.[68]
Cryptocurrencies and cryptoeconomics
Cryptographic techniques enable
Legal issues
Prohibitions
Cryptography has long been of interest to intelligence gathering and law enforcement agencies.[9] Secret communications may be criminal or even treasonous.[citation needed] Because of its facilitation of privacy, and the diminution of privacy attendant on its prohibition, cryptography is also of considerable interest to civil rights supporters. Accordingly, there has been a history of controversial legal issues surrounding cryptography, especially since the advent of inexpensive computers has made widespread access to high-quality cryptography possible.
In some countries, even the domestic use of cryptography is, or has been, restricted. Until 1999, France significantly restricted the use of cryptography domestically, though it has since relaxed many of these rules. In
In the United States, cryptography is legal for domestic use, but there has been much conflict over legal issues related to cryptography.[9] One particularly important issue has been the export of cryptography and cryptographic software and hardware. Probably because of the importance of cryptanalysis in World War II and an expectation that cryptography would continue to be important for national security, many Western governments have, at some point, strictly regulated export of cryptography. After World War II, it was illegal in the US to sell or distribute encryption technology overseas; in fact, encryption was designated as auxiliary military equipment and put on the United States Munitions List.[70] Until the development of the personal computer, asymmetric key algorithms (i.e., public key techniques), and the Internet, this was not especially problematic. However, as the Internet grew and computers became more widely available, high-quality encryption techniques became well known around the globe.
Export controls
In the 1990s, there were several challenges to US export regulation of cryptography. After the
In 1996, thirty-nine countries signed the
NSA involvement
Another contentious issue connected to cryptography in the United States is the influence of the
Another instance of the NSA's involvement was the 1993
Digital rights management
Cryptography is central to digital rights management (DRM), a group of techniques for technologically controlling use of
The
Forced disclosure of encryption keys
In the United Kingdom, the Regulation of Investigatory Powers Act gives UK police the powers to force suspects to decrypt files or hand over passwords that protect encryption keys. Failure to comply is an offense in its own right, punishable on conviction by a two-year jail sentence or up to five years in cases involving national security.[8] Successful prosecutions have occurred under the Act; the first, in 2009,[82] resulted in a term of 13 months' imprisonment.[83] Similar forced disclosure laws in Australia, Finland, France, and India compel individual suspects under investigation to hand over encryption keys or passwords during a criminal investigation.
In the United States, the federal criminal case of United States v. Fricosu addressed whether a search warrant can compel a person to reveal an encryption passphrase or password.[84] The Electronic Frontier Foundation (EFF) argued that this is a violation of the protection from self-incrimination given by the Fifth Amendment.[85] In 2012, the court ruled that under the All Writs Act, the defendant was required to produce an unencrypted hard drive for the court.[86]
In many jurisdictions, the legal status of forced disclosure remains unclear.
The 2016
As a potential counter-measure to forced disclosure some cryptographic software supports plausible deniability, where the encrypted data is indistinguishable from unused random data (for example such as that of a drive which has been securely wiped).
See also
- Collision attack
- Comparison of cryptography libraries
- Cryptovirology – Securing and encrypting virology
- Crypto Wars – Attempts to limit access to strong cryptography
- Encyclopedia of Cryptography and Security – Book by Technische Universiteit Eindhoven
- Global surveillance – Mass surveillance across national borders
- Indistinguishability obfuscation – Type of cryptographic software obfuscation
- Information theory – Scientific study of digital information
- Outline of cryptography
- List of cryptographers
- List of multiple discoveries
- List of unsolved problems in computer science – List of unsolved computational problems
- Pre-shared key – Method to set encryption keys
- Secure cryptoprocessor
- Strong cryptography – Term applied to cryptographic systems that are highly resistant to cryptanalysis
- Syllabical and Steganographical Table – Eighteenth-century work believed to be the first cryptography chart – first cryptography chart
- World Wide Web Consortium's Web Cryptography API – World Wide Web Consortium cryptography standard
References
- A Greek-English Lexicon. Oxford University Press.
- ^ Rivest, Ronald L. (1990). "Cryptography". In J. Van Leeuwen (ed.). Handbook of Theoretical Computer Science. Vol. 1. Elsevier.
- ^ Bellare, Mihir; Rogaway, Phillip (21 September 2005). "Introduction". Introduction to Modern Cryptography. p. 10.
- from the original on 27 August 2022. Retrieved 20 September 2022.
- ^ ISBN 978-0-8493-8523-0.
- ^ a b Biggs, Norman (2008). Codes: An introduction to Information Communication and Cryptography. Springer. p. 171.
- ^ a b "Overview per country". Crypto Law Survey. February 2013. Archived from the original on 1 January 2013. Retrieved 26 March 2015.
- ^ a b "UK Data Encryption Disclosure Law Takes Effect". PC World. 1 October 2007. Archived from the original on 20 January 2012. Retrieved 26 March 2015.
- ^ a b c d Ranger, Steve (24 March 2015). "The undercover war on your internet secrets: How online surveillance cracked our trust in the web". TechRepublic. Archived from the original on 12 June 2016. Retrieved 12 June 2016.
- ^ a b Doctorow, Cory (2 May 2007). "Digg users revolt over AACS key". Boing Boing. Archived from the original on 12 May 2015. Retrieved 26 March 2015.
- JSTOR 2928778.
- ISBN 978-0801853319.
- ^ ISBN 978-0-684-83130-5.
- ^ "An Introduction to Modern Cryptosystems". Archived from the original on 17 November 2015. Retrieved 12 October 2015.
- S2CID 17915038.
- ^ "cryptology | Britannica". www.britannica.com. Archived from the original on 10 July 2022. Retrieved 22 June 2022.
- ISBN 0-521-79172-3
- Merriam-Webster's Collegiate Dictionary (11th ed.). Merriam-Webster. Retrieved 26 March 2015.
- from the original on 18 April 2015. Retrieved 26 March 2015.
- ^ Military.com (13 May 2021). "What's a Cryptologic Linguist?". Military.com. Retrieved 17 July 2023.
- ISBN 9789027278760.
- from the original on 26 February 2022. Retrieved 26 February 2022.
- ISBN 978-0-8218-2986-8.
- ^ electricpulp.com. "CODES – Encyclopaedia Iranica". www.iranicaonline.org. Archived from the original on 5 March 2017. Retrieved 4 March 2017.
- ISBN 978-1439103555. Archivedfrom the original on 1 July 2023. Retrieved 16 October 2020.
- S2CID 123537702.
- ISBN 978-0-385-49532-5.
- ^ .
- S2CID 21812933.
- ISBN 978-0-19-509514-2.
- ISBN 978-1-57488-367-1.
- ^ "The Legacy of DES – Schneier on Security". www.schneier.com. Archived from the original on 23 February 2022. Retrieved 26 January 2022.
- ^ (PDF) from the original on 3 December 2017. Retrieved 16 November 2015.
- ISBN 978-0-385-49532-5.
- ^ Cryptography: Theory and Practice, Third Edition (Discrete Mathematics and Its Applications), 2005, by Douglas R. Stinson, Chapman and Hall/CRC
- Fortify. Archivedfrom the original on 24 September 2015. Retrieved 26 March 2015.
- from the original on 19 April 2022. Retrieved 19 April 2022.
- ^ "FIPS PUB 197: The official Advanced Encryption Standard" (PDF). Computer Security Resource Center. National Institute of Standards and Technology. Archived from the original (PDF) on 7 April 2015. Retrieved 26 March 2015.
- ^ "NCUA letter to credit unions" (PDF). National Credit Union Administration. July 2004. Archived (PDF) from the original on 12 September 2014. Retrieved 26 March 2015.
- from the original on 15 March 2015. Retrieved 26 March 2015.
- ^ Golen, Pawel (19 July 2002). "SSH". WindowSecurity. Archived from the original on 29 October 2009. Retrieved 26 March 2015.
- ^ ISBN 978-0-471-11709-4.
- OCLC 567365751.
- from the original on 10 July 2022. Retrieved 26 August 2022.
- ^ a b "Announcing Request for Candidate Algorithm Nominations for a New Cryptographic Hash Algorithm (SHA–3) Family" (PDF). Federal Register. 72 (212). 2 November 2007. Archived (PDF) from the original on 28 February 2008.
- ^ a b "NIST Selects Winner of Secure Hash Algorithm (SHA-3) Competition". NIST. National Institute of Standards and Technology. 2 October 2012. Archived from the original on 2 April 2015. Retrieved 26 March 2015.
- S2CID 13210741.
- ^ Ralph Merkle was working on similar ideas at the time and encountered publication delays, and Hellman has suggested that the term used should be Diffie–Hellman–Merkle asymmetric key cryptography.
- JSTOR 20040343.
- ^ "Using Client-Certificate based authentication with NGINX on Ubuntu". SSLTrust. Archived from the original on 26 August 2019. Retrieved 13 June 2019.
- Mathematical recreationscolumn
- ^ a b Wayner, Peter (24 December 1997). "British Document Outlines Early Encryption Discovery". The New York Times. Archived from the original on 27 June 2017. Retrieved 26 March 2015.
- ^ Cocks, Clifford (20 November 1973). "A Note on 'Non-Secret Encryption'" (PDF). CESG Research Report. Archived (PDF) from the original on 27 July 2011. Retrieved 22 July 2009.
- ISBN 9780385495318.
- ISBN 978-0-252-72548-7.
- ^ "An Example of a Man-in-the-middle Attack Against Server Authenticated SSL-sessions" (PDF). Archived (PDF) from the original on 3 June 2016. Retrieved 13 October 2015.
- ISBN 978-3-540-43066-7.
- ^ Song, Dawn; Wagner, David A.; Tian, Xuqing (2001). "Timing Analysis of Keystrokes and Timing Attacks on SSH" (PDF). Tenth USENIX Security Symposium.
- ISBN 978-3-540-57766-9. Archived from the originalon 26 July 2011.
- S2CID 17981195.
- doi:10.1137/0218012.
- ^ Blakley, G. (June 1979). "Safeguarding cryptographic keys". Proceedings of AFIPS 1979. 48: 313–317.
- S2CID 16321225.
- from the original on 24 April 2021. Retrieved 24 April 2021.
- S2CID 232042514.
- ^ Cohen, Fred (1995). "2.4 – Applications of Cryptography". all.net. Archived from the original on 24 August 1999. Retrieved 21 December 2021.
- ^ "4 Common Encryption Methods to Shield Sensitive Data From Prying Eyes". GetApp. Archived from the original on 14 May 2022. Retrieved 14 May 2022.
- ^ a b c d e Chamberlain, Austin (12 March 2017). "Applications of Cryptography | UCL Risky Business". blogs.ucl.ac.uk. Archived from the original on 26 February 2018. Retrieved 21 December 2021.
- RSA Laboratories. Archivedfrom the original on 16 April 2015. Retrieved 26 March 2015.
- ^ Rosenoer, Jonathan (1995). "Cryptography & Speech". CyberLaw. Archived from the original on 1 December 2005. Retrieved 23 June 2006.
- ^ "Case Closed on Zimmermann PGP Investigation". IEEE Computer Society's Technical Committee on Security and Privacy. 14 February 1996. Archived from the original on 11 June 2010. Retrieved 26 March 2015.
- ^ OCLC 244148644.
- ^ "Bernstein v USDOJ". Electronic Privacy Information Center. United States Court of Appeals for the Ninth Circuit. 6 May 1999. Archived from the original on 13 August 2009. Retrieved 26 March 2015.
- ^ "Dual-use List – Category 5 – Part 2 – "Information Security"" (PDF). Wassenaar Arrangement. Archived from the original on 26 September 2018. Retrieved 26 March 2015.
- RSA Laboratories. Archivedfrom the original on 31 March 2015. Retrieved 26 March 2015.
- ^ Schneier, Bruce (15 June 2000). "The Data Encryption Standard (DES)". Crypto-Gram. Archived from the original on 2 January 2010. Retrieved 26 March 2015.
- from the original on 4 March 2016. Retrieved 26 March 2015.
- S2CID 206783462.
- ^ "The Digital Millennium Copyright Act of 1998" (PDF). United States Copyright Office. Archived (PDF) from the original on 8 August 2007. Retrieved 26 March 2015.
- ^ Ferguson, Niels (15 August 2001). "Censorship in action: why I don't publish my HDCP results". Archived from the original on 1 December 2001. Retrieved 16 February 2009.
- ^ Schneier, Bruce (6 August 2001). "Arrest of Computer Researcher Is Arrest of First Amendment Rights". InternetWeek. Archived from the original on 7 March 2017. Retrieved 7 March 2017.
- ^ Williams, Christopher (11 August 2009). "Two convicted for refusal to decrypt data". The Register. Archived from the original on 17 March 2015. Retrieved 26 March 2015.
- ^ Williams, Christopher (24 November 2009). "UK jails schizophrenic for refusal to decrypt files". The Register. Archived from the original on 26 March 2015. Retrieved 26 March 2015.
- ^ Ingold, John (4 January 2012). "Password case reframes Fifth Amendment rights in context of digital world". The Denver Post. Archived from the original on 2 April 2015. Retrieved 26 March 2015.
- ^ Leyden, John (13 July 2011). "US court test for rights not to hand over crypto keys". The Register. Archived from the original on 24 October 2014. Retrieved 26 March 2015.
- ^ "Order Granting Application under the All Writs Act Requiring Defendant Fricosu to Assist in the Execution of Previously Issued Search Warrants" (PDF). United States District Court for the District of Colorado. Archived (PDF) from the original on 9 June 2021. Retrieved 26 March 2015.
Further reading
- Arbib, Jonathan; Dwyer, John (2011). Discrete Mathematics for Cryptography. Algana Publishing. ISBN 978-1-907934-01-8.
- Becket, B (1988). Introduction to Cryptology. Blackwell Scientific Publications. OCLC 16832704. Excellent coverage of many classical ciphers and cryptography concepts and of the "modern" DES and RSA systems.
- Esslinger, Bernhard; et al. The CrypTool Script (PDF) (10th ed.). Archived from the original (PDF) on 22 July 2011. Retrieved 23 December 2013. CrypTool is the most widespread e-learning program about cryptography and cryptanalysis, open source.
- In Code: A Mathematical Journey by Sarah Flannery (with David Flannery). Popular account of Sarah's award-winning project on public-key cryptography, co-written with her father.
- ISBN 1-57488-367-4.
- Oded Goldreich, Foundations of Cryptography Archived 9 August 2016 at the Wayback Machine, in two volumes, Cambridge University Press, 2001 and 2004.
- Alvin's Secret Code by Clifford B. Hicks (children's novel that introduces some basic cryptography and cryptanalysis).
- Introduction to Modern Cryptography Archived 16 October 2009 at the Wayback Machine by Jonathan Katz and Yehuda Lindell.
- Ibrahim A. Al-Kadi, "The Origins of Cryptology: the Arab Contributions," Cryptologia, vol. 16, no. 2 (April 1992), pp. 97–126.
- Christof Paar, Jan Pelzl, Understanding Cryptography, A Textbook for Students and Practitioners. Archived 31 October 2020 at the Wayback Machine Springer, 2009. (Slides, online cryptography lectures and other information are available on the companion web site.) Very accessible introduction to practical cryptography for non-mathematicians.
- "Max Planck Encyclopedia of Public International Law". Archived from the original on 1 May 2018. Retrieved 15 December 2021., giving an overview of international law issues regarding cryptography.
- Introduction to Modern Cryptography by Phillip Rogaway and Mihir Bellare, a mathematical introduction to theoretical cryptography including reduction-based security proofs. PDF download Archived 24 September 2009 at the Wayback Machine.
- ISBN 978-0-13-335469-0.
- Tenzer, Theo (2021): Super Secreto – The Third Epoch of Cryptography: Multiple, exponential, quantum-secure and above all, simple and practical Encryption for Everyone, Norderstedt, ISBN 978-3755761174.
- Johann-Christoph Woltag, 'Coded Communications (Encryption)' in Rüdiger Wolfrum (ed) Max Planck Encyclopedia of Public International Law (Oxford University Press 2009).
External links
- The dictionary definition of cryptography at Wiktionary
- Media related to Cryptography at Wikimedia Commons
- Cryptography on In Our Time at the BBC
- Crypto Glossary and Dictionary of Technical Cryptography Archived 4 July 2022 at the Wayback Machine
- A Course in Cryptography by Raphael Pass & Abhi Shelat – offered at Cornell in the form of lecture notes.
- For more on the use of cryptographic elements in fiction, see: Dooley, John F. (23 August 2012). "Cryptology in Fiction". Archived from the original on 29 July 2020. Retrieved 20 February 2015.
- The George Fabyan Collection at the Library of Congress has early editions of works of seventeenth-century English literature, publications relating to cryptography.