Erodium cicutarium

Source: Wikipedia, the free encyclopedia.

Common stork's-bill
Scientific classification Edit this classification
Kingdom: Plantae
Clade: Tracheophytes
Clade: Angiosperms
Clade: Eudicots
Clade: Rosids
Order: Geraniales
Family: Geraniaceae
Genus: Erodium
Species:
E. cicutarium
Binomial name
Erodium cicutarium
Synonyms

Geranium cicutarium L.

Erodium cicutarium, also known as common stork's-bill,

Description

It is a hairy, sticky annual, resembling herb Robert but lacking the unpleasant odor. The stems are reddish and bear bright pink flowers, which often have dark spots on the bases. The flowers are arranged in a loose cluster and have ten filaments – five of which are fertile – and five styles.[5] The leaves are pinnate to pinnate-pinnatifid, with hairy stems.[6] The long seed-pod, shaped like the bill of a stork, bursts open in a spiral when ripe, sending the seeds (which have long tails called awns) into the air.

A botanical illustration
Close-up of the flowers
Typical leaf shape
achenes with awns

Seed dispersal behavior

Erodium cicutarium seed uses self-dispersal mechanisms to spread away from the maternal plant and also reach a good germination site to increase fitness. Two abilities that E. cicutarium has are explosive dispersal, which launches seeds by storing elastic energy, and self-burial dispersal, where the seeds move themselves across the soil using hygroscopically powered shape change.[7]

Explosive dispersal

After flowering, the five pericarps on the fruits of E. cicutarium, and the awns, which are appendages of the pericarps, join and grow into a spine shape. As the fruits dry, dehydration creates tension, and elastic energy develops within the awns. With sufficient elastic energy the shape of the awns changes from straight to helical, causing them to burst away from the maternal plants, bringing the seeds with them.[8] During dispersal, mechanical energy stored in specialized tissues is transferred to the seeds to increase their kinetic and potential energy. The energy storage capacity of the seeds is determined by the level of hydration, suggesting a role of turgor pressure in the explosive dispersal mechanism.[9]

Self-burial dispersal

The awn of each seed, once on the ground, responds to the humidity of the environment and changes its shape accordingly. The awn coils under dehydration and uncoils when wet. This results in motor action of the seed, which, combined with the hairs on the seed and along the length of the awns, moves the seed across the surface, eventually positioning it into a crevice and creating a drilling action that forces the seed into the ground. The coiling and uncoiling of the awns is achieved by the hygroscopic tissue in the active layer on the awns. Hygroscopic movement happens in response to a change in the water content of dead plant tissue, specially in the cell wall. Water absorbed by the cell wall binds to the matrix of the awns, causing it to expand and to drive the cellulose microfibrils apart, which causes the matrix to uncoil, thus straightening the awns. Inversely, the matrix will contract under dehydration, leading to the coil of the awns.[10]

Erodium cicutarium seed uncoiling as it absorbs moisture (real-time)
Erodium cicutarium seed drills itself into the soil (time-lapse)

Research found no correlation between weight of the awned fruits and the dispersal distance.[4] E. cicutarium with larger seeds have a longer coil and uncoil time compare to smaller seeds. In the field, the rate of seed burial declined throughout the season. The larger seeds buried themselves more often than the smaller seeds. However, larger seeds have a harder time finding a large enough space for the seeds to be buried. Conversely, smaller seeds have an easier time finding a hole and drilling themselves in, and thus are more likely to be buried.[8]

Advantages

The advantages of explosive dispersal and self-burial dispersal are getting mature seeds of E.cicutarium quickly to the ground during the most favorable period for burial, thus increasing fitness.

Distribution and ecology

The plant is widespread across North America. It grows as an annual in the continent's northern half. In the southern areas of North America, the plant tends to grow as a biennial with a more erect habit and with much larger leaves, flowers, and fruits. It flowers from May until August. Common stork's-bill can be found in bare, sandy, grassy places both inland and around the coasts. It is a food plant for the larvae of the

brown argus
butterfly.

The seeds of this plant are collected by various species of harvester ants.[11]

Uses

The young leaves are edible raw or cooked.[6] The whole plant is reportedly edible with a flavor similar to sharp parsley if picked young. According to John Lovell's Honey Plants of North America (1926), "the pink flowers are a valuable source of honey (nectar), and also furnish much pollen".[12] Among the Zuni people, a poultice of chewed root is applied to sores and rashes and an infusion of the root is taken for stomachache.[13]

Nutrition

Hairy stork's bill, raw
Nutritional value per 100 g (3.5 oz)
Energy96 kJ (23 kcal)
7.9 g
Sugars4.3 g
Dietary fiber3.0 g
0.1 g
0.6 g
VitaminsQuantity
%DV
Vitamin A equiv.
22%
200 μg
Vitamin C
2%
2.03 mg
MineralsQuantity
%DV
Calcium
6%
74.3 mg
Iron
12%
2.2 mg
Magnesium
5%
20 mg
Phosphorus
2%
28 mg
Potassium
7%
223.4 mg
Sodium
1%
18.9 mg
Zinc
4%
0.4 mg
Other constituentsQuantity
Water90.6 g

Percentages estimated using US recommendations for adults,[15] except for potassium, which is estimated based on expert recommendation from the National Academies.[16]

Raw Hairy stork's bill are 90.6% water, 7.9%

ash and 0.1% fat.[14]

References

  1. ^ "Erodium cicutarium", NBN Atlas, retrieved 2022-02-19
  2. ^ "Erodium cicutarium (L.) L'Hér". Plants of the World Online. Royal Botanic Gardens, Kew. Retrieved 2019-04-03.
  3. S2CID 84221304
    .
  4. ^ .
  5. ^ Giblin, David. "Erodium cicutarium, redstem stork's bill, common stork's bill". WTU Herbarium Image Collection. Burke Museum of Natural History and Culture. Archived from the original on August 11, 2016. Retrieved October 29, 2013.
  6. ^ ]
  7. .
  8. ^ .
  9. .
  10. .
  11. .
  12. ^ John H. Lovell (1926). Honey Plants of North America.[page needed]
  13. PMID 6893476
    .
  14. ^ .
  15. ^ United States Food and Drug Administration (2024). "Daily Value on the Nutrition and Supplement Facts Labels". Retrieved 2024-03-28.
  16. PMID 30844154.{{cite book}}: CS1 maint: multiple names: authors list (link
    )

External links