List of movements of the human body

Source: Wikipedia, the free encyclopedia.

The different types of levers in the human body. These levers consisting of First Class Lever, Second Class Lever, and a Third Class Lever.

The list below describes such skeletal movements as normally are possible in particular joints of the human body. Other animals have different degrees of movement at their respective joints; this is because of differences in positions of muscles and because structures peculiar to the bodies of humans and other species block motions unsuited to their anatomies.

Arm and shoulder

Shoulder

Movements of the shoulder joint.[1]
Movement Muscles Origin Insertion
Flexion

(150°–170°)
Anterior fibers of deltoid Clavicle Middle of lateral surface of
shaft of humerus
pectoralis major
Clavicle Lateral lip of
bicipital groove
of humerus
Long head of
biceps brachii
Supraglenoid tubercle of scapula Tuberosity of radius, Deep fascia of forearm
Short head of
biceps brachii
Coracoid process of scapula
Coracobrachialis Coracoid process Medial aspect of shaft of humerus
Extension

(40°)
Posterior fibers of deltoid Spine of scapula Middle of lateral surface of shaft of humerus
Latissimus dorsi
inferior angle of scapula
Floor of bicipital groove of humerus
Teres major
Lateral border of scapula
Medial lip of bicipital groove of humerus
Abduction

(160°–180°)
Middle fibers of deltoid Acromion process of scapula Middle of lateral surface of shaft of humerus
Supraspinatus Supraspinous fossa of scapula Greater tubercle of humerus
Adduction

(30°–40°)
Sternal
part of pectoralis major
Sternum, upper six costal cartilages
Lateral lip of bicipital groove of humerus
Latissimus dorsi Iliac crest, lumbar fascia, spines of lower six thoracic vertebrae, lower 3-4 ribs, inferior angle of scapula Floor of bicipital groove of humerus
Teres major Lower third of
lateral border of scapula
Medial lip of bicipital groove of humerus
Teres minor Upper two thirds of lateral border of scapula Greater tubercle of humerus
Lateral rotation

(in abduction: 95°;
in adduction: 70°)
Infraspinatus Infraspinous fossa of scapula Greater tubercle of humerus
Teres minor Upper two thirds of lateral border of scapula Greater tubercle of humerus
Posterior fibers of deltoid Spine of scapula Middle of lateral surface of shaft of humerus
Medial rotation

(in abduction: 40°–50°;
in adduction: 70°)
Subscapularis
Subscapular fossa
Lesser tubercle of humerus
Latissimus dorsi Iliac crest, lumbar fascia, spines of lower 3-4 ribs, inferior angle of scapula Floor of bicipital groove of humerus
Teres major Lower third of lateral border of scapula Medial lip of bicipital groove of humerus
Anterior fibers of deltoid Clavicle Middle of lateral surface of shaft of humerus

The major muscles involved in retraction include the

pectoralis minor muscles.[4][5]

Sternoclavicular and acromioclavicular joints

Scapula and clavicula Abduction (Protraction) Adduction (Retraction)
Depression Elevation
Rotation Upward (Superior Rotation) Rotation Downward (Inferior Rotation)

Elbow

Joint From To Description
Humeroulnar joint trochlear notch of the ulna trochlea of humerus Is a simple
hinge-joint
, and allows of movements of flexion and extension only.
Humeroradial joint
head of the radius
capitulum of the humerus Is a ball-and-socket joint.
Superior radioulnar joint
head of the radius
radial notch of the ulna In any position of flexion or extension, the radius, carrying the hand with it, can be rotated in it. This movement includes
supination
.

Wrist and fingers

Midcarpals
Flexion Extension / Hyperextension
Adduction (Ulna Deviation) Abduction (Radial Deviation)

Movements of the fingers

Metacarpophalangeal
Flexion Extension / Hyperextension
Adduction Abduction
Interphalangeal
Flexion Extension

Movements of the thumb

Carpometacarpal (thumb
)
Flexion Extension
Adduction Abduction
Opposition
Metacarpophalangeal
(thumb)
Flexion Extension
Adduction Abduction
Interphalangeal
(thumb)
Flexion Extension / Hyperextension

Neck

Antlantoaxial
)
Flexion Extension / Hyperextension
Lateral Flexion (Abduction) Reduction (Adduction)
Rotation

Spine

Cervical spine
Flexion Extension / Hyperextension
Lateral Flexion (Abduction) Reduction (Adduction)
Rotation
Thoracic spine
Flexion Extension / Hyperextension
Lateral Flexion (Abduction) Reduction (Adduction)
Rotation
Lumbar spine
Flexion Extension / Hyperextension
Lateral Flexion (Abduction) Reduction (Adduction)
Rotation

Lower limb

Hip (acetabulofemoral joint) Flexion Extension
Adduction Abduction
Transverse Adduction Transverse Abduction
Medial Rotation (Internal Rotation) Lateral Rotation (External Rotation)

Knees

Knee Flexion Extension
Medial Rotation (Internal Rotation) Lateral Rotation (External Rotation)
Ankle Plantar Flexion Dorsi Flexion

Feet

Intertarsal
- (foot)
Inversion Eversion
Plantarflexion
Metatarsophalangeal
(toes)
Flexion Extension / Hyperextension
Abduction Adduction
Interphalangeal
(toes)
Flexion Extension


The muscles

extensor hallucis longus invert.[6]: 123  Inversion occurs at the subtalar joint and transverse tarsal joint.[7]

Eversion of the foot occurs at the subtalar joint. The muscles involved in this include fibularis longus and fibularis brevis, which are innervated by the superficial fibular nerve. Some sources also state that the fibularis tertius everts.[6]: 108 

  • Peroneus longus and peroneus brevis (centre left), the primary muscles involved in eversion
    peroneus brevis
    (centre left), the primary muscles involved in eversion
  • Tibialis anterior and posterior (centre top), the primary muscles involved in inversion
    Tibialis anterior and posterior (centre top), the primary muscles involved in inversion

Dorsiflexion of the foot: The muscles involved include those of the

peroneus tertius. The range of motion for dorsiflexion indicated in the literature varies from 12.2[8] to 18[9] degrees.[10] Foot drop
is a condition, that occurs when dorsiflexion is difficult for an individual who is walking.

Plantarflexion of the foot: Primary muscles for plantar flexion are situated in the

sacral spinal cord roots S1 and S2. Compression of S1 roots may result in weakness in plantarflexion; these nerves run from the lower back to the bottom of the foot. [citation needed
]

puts the forearm into a midpronated/supinated position from either full pronation or supination. For the foot, pronation will cause the sole of the foot to face more laterally than when standing in the anatomical position.

Pronation of the foot is a compound movement that combines

knock-kneed" if one has overly pronated feet. It flattens the arch as the foot strikes the ground in order to absorb shock when the heel hits the ground, and to assist in balance during mid-stance. If habits develop, this action can lead to foot pain as well as knee pain, shin splints, achilles tendinitis, posterior tibial tendinitis, piriformis syndrome, and plantar fasciitis.[citation needed
].

References

  1. ^ Snell, Richard S. Clinical Anatomy by Systems. Lippincott Williams & Wilkins. pp. 427–428.
  2. Dartmouth Medical School
    's Department of Anatomy
  3. ^ Scapula & Clavicle Articulations
  4. Dartmouth Medical School
    's Department of Anatomy
  5. ^ Animation at exrx.net
  6. ^ .
  7. ^ "Gross Anatomy: Functional Anatomy Of The Ankle And Foot". Archived from the original on 2009-08-23. Retrieved December 18, 2013.
  8. ^ Boone, Donna C.; Azen, Stanley P. (July 1979). "Normal range of motion of joints in male subjects". The Journal of Bone and Joint Surgery. 61-A: 756–759. Archived from the original on 26 May 2013. Retrieved 24 October 2012.
  9. ^ American Academy of Orthopaedic Surgeons (1965). Joint Motion: Method of Measuring and Recording. Chicago: American Academy of Orthopaedic Surgeons.
  10. .
  11. .
  12. .
  13. ^ "Foot in the bottom of the foot – RealHealthyNet". Realhealthynet.com. July 11, 2012. Archived from the original on 2013-07-19. Retrieved August 30, 2013.