Helium

Page semi-protected
Listen to this article
Source: Wikipedia, the free encyclopedia.

Helium, 2He
A clear tube with a red light emanating from it
Helium
Pronunciation/ˈhliəm/ (HEE-lee-əm)
Appearancecolorless gas, exhibiting a gray, cloudy glow (or reddish-orange if an especially high voltage is used) when placed in an electric field
Standard atomic weight Ar°(He)
Helium in the periodic table
Hydrogen Helium
Lithium Beryllium Boron Carbon Nitrogen Oxygen Fluorine Neon
Sodium Magnesium Aluminium Silicon Phosphorus Sulfur Chlorine Argon
Potassium Calcium Scandium Titanium Vanadium Chromium Manganese Iron Cobalt Nickel Copper Zinc Gallium Germanium Arsenic Selenium Bromine Krypton
Rubidium Strontium Yttrium Zirconium Niobium Molybdenum Technetium Ruthenium Rhodium Palladium Silver Cadmium Indium Tin Antimony Tellurium Iodine Xenon
Caesium Barium Lanthanum Cerium Praseodymium Neodymium Promethium Samarium Europium Gadolinium Terbium Dysprosium Holmium Erbium Thulium Ytterbium Lutetium Hafnium Tantalum Tungsten Rhenium Osmium Iridium Platinum Gold Mercury (element) Thallium Lead Bismuth Polonium Astatine Radon
Francium Radium Actinium Thorium Protactinium Uranium Neptunium Plutonium Americium Curium Berkelium Californium Einsteinium Fermium Mendelevium Nobelium Lawrencium Rutherfordium Dubnium Seaborgium Bohrium Hassium Meitnerium Darmstadtium Roentgenium Copernicium Nihonium Flerovium Moscovium Livermorium Tennessine Oganesson


He

Ne
hydrogenheliumlithium
kJ/mol
Heat of vaporization0.0829 kJ/mol
Molar heat capacity20.78 J/(mol·K)[3]
Vapor pressure (defined by ITS-90)
P (Pa) 1 10 100 1 k 10 k 100 k
at T (K)     1.23 1.67 2.48 4.21
Atomic properties
Oxidation statescommon: (none)
0
Discovery
Norman Lockyer (1868)
First isolationWilliam Ramsay, Per Teodor Cleve, Abraham Langlet (1895)
Isotopes of helium
Main isotopes[7] Decay
abun­dance half-life (t1/2) mode pro­duct
3He 0.0002%
stable
4He 99.9998% stable
 Category: Helium
| references

Helium (from

stars
.

Helium was first detected as an unknown, yellow

natural gas fields
in parts of the United States, by far the largest supplier of the gas today.

Liquid helium is used in

silicon wafers—account for half of the gas produced. A small but well-known use is as a lifting gas in balloons and airships.[22] As with any gas whose density differs from that of air, inhaling a small volume of helium temporarily changes the timbre and quality of the human voice. In scientific research, the behavior of the two fluid phases of helium-4 (helium I and helium II) is important to researchers studying quantum mechanics (in particular the property of superfluidity) and to those looking at the phenomena, such as superconductivity, produced in matter near absolute zero
.

On Earth, it is relatively rare—5.2

radiogenic helium is trapped with natural gas in concentrations as great as 7% by volume, from which it is extracted commercially by a low-temperature separation process called fractional distillation. Terrestrial helium is a non-renewable resource because once released into the atmosphere, it promptly escapes into space. Its supply is thought to be rapidly diminishing.[23][24] However, some studies suggest that helium produced deep in the Earth by radioactive decay can collect in natural gas reserves in larger-than-expected quantities,[25] in some cases having been released by volcanic activity.[26]

History

Scientific discoveries

The first evidence of helium was observed on August 18, 1868, as a bright yellow line with a

Fraunhofer lines of sodium.[29][30] He concluded that it was caused by an element in the Sun unknown on Earth. Lockyer named the element with the Greek word for the Sun, ἥλιος (helios).[31][32] It is sometimes said that English chemist Edward Frankland was also involved in the naming, but this is unlikely as he doubted the existence of this new element. The ending "-ium" is unusual, as it normally applies only to metallic elements; probably Lockyer, being an astronomer, was unaware of the chemical conventions.[33]

Picture of visible spectrum with superimposed sharp yellow and blue and violet lines
Spectral lines of helium

In 1881, Italian physicist Luigi Palmieri detected helium on Earth for the first time through its D3 spectral line, when he analyzed a material that had been sublimated during a recent eruption of Mount Vesuvius.[34]

Sir William Ramsay, the discoverer of terrestrial helium
The cleveite sample from which Ramsay first purified helium[35]

On March 26, 1895, Scottish chemist

atomic weight.[41][42][28][43] Helium was also isolated by American geochemist William Francis Hillebrand prior to Ramsay's discovery, when he noticed unusual spectral lines while testing a sample of the mineral uraninite. Hillebrand, however, attributed the lines to nitrogen.[44] His letter of congratulations to Ramsay offers an interesting case of discovery, and near-discovery, in science.[45]

In 1907,

evacuated tube, then creating a discharge in the tube, to study the spectrum of the new gas inside.[46] In 1908, helium was first liquefied by Dutch physicist Heike Kamerlingh Onnes by cooling the gas to less than 5 K (−268.15 °C; −450.67 °F).[47][48] He tried to solidify it by further reducing the temperature but failed, because helium does not solidify at atmospheric pressure. Onnes' student Willem Hendrik Keesom was eventually able to solidify 1 cm3 of helium in 1926 by applying additional external pressure.[49][50]

In 1913,

Å) to a new form of hydrogen with half-integer transition levels.[57][58] In 1912, Alfred Fowler[59] managed to produce similar lines from a hydrogen-helium mixture, and supported Pickering's conclusion as to their origin.[60] Bohr's model does not allow for half-integer transitions (nor does quantum mechanics) and Bohr concluded that Pickering and Fowler were wrong, and instead assigned these spectral lines to ionised helium, He+.[61] Fowler was initially skeptical[62] but was ultimately convinced[63] that Bohr was correct,[51] and by 1915 "spectroscopists had transferred [the Pickering–Fowler series] definitively [from hydrogen] to helium."[54][64] Bohr's theoretical work on the Pickering series had demonstrated the need for "a re-examination of problems that seemed already to have been solved within classical theories" and provided important confirmation for his atomic theory.[54]

In 1938, Russian physicist

Cooper pairs of electrons producing superconductivity.[66]

In 1961, Vignos and Fairbank reported the existence of a different phase of solid helium-4, designated the gamma-phase. It exists for a narrow range of pressure between 1.45 and 1.78 K.[67]

Extraction and use

Historical marker, denoting a massive helium find near Dexter, Kansas

After an oil drilling operation in 1903 in

American Great Plains, available for extraction as a byproduct of natural gas.[71]

Following a suggestion by Sir

Bolling Field in Washington, D.C., on December 1, 1921,[72] nearly two years before the Navy's first rigid helium-filled airship, the Naval Aircraft Factory-built USS Shenandoah
, flew in September 1923.

Although the extraction process using low-temperature

gas liquefaction was not developed in time to be significant during World War I, production continued. Helium was primarily used as a lifting gas in lighter-than-air craft. During World War II, the demand increased for helium for lifting gas and for shielded arc welding. The helium mass spectrometer was also vital in the atomic bomb Manhattan Project.[73]

The

rocket fuel (among other uses) during the Space Race and Cold War. Helium use in the United States in 1965 was more than eight times the peak wartime consumption.[74]

After the Helium Acts Amendments of 1960 (Public Law 86–777), the U.S. Bureau of Mines arranged for five private plants to recover helium from natural gas. For this helium conservation program, the Bureau built a 425-mile (684 km) pipeline from Bushton, Kansas, to connect those plants with the government's partially depleted Cliffside gas field near Amarillo, Texas. This helium-nitrogen mixture was injected and stored in the Cliffside gas field until needed, at which time it was further purified.[75]

By 1995, a billion cubic meters of the gas had been collected and the reserve was US$1.4 billion in debt, prompting the

Congress of the United States in 1996 to discontinue the reserve.[28][76] The resulting Helium Privatization Act of 1996[77] (Public Law 104–273) directed the United States Department of the Interior to empty the reserve, with sales starting by 2005.[78]

Helium produced between 1930 and 1945 was about 98.3% pure (2% nitrogen), which was adequate for airships. In 1945, a small amount of 99.9% helium was produced for welding use. By 1949, commercial quantities of Grade A 99.95% helium were available.[79]

For many years, the United States produced more than 90% of commercially usable helium in the world, while extraction plants in Canada, Poland, Russia, and other nations produced the remainder. In the mid-1990s, a new plant in Arzew, Algeria, producing 17 million cubic metres (600 million cubic feet) began operation, with enough production to cover all of Europe's demand. Meanwhile, by 2000, the consumption of helium within the U.S. had risen to more than 15 million kg per year.[80] In 2004–2006, additional plants in Ras Laffan, Qatar, and Skikda, Algeria were built. Algeria quickly became the second leading producer of helium.[81] Through this time, both helium consumption and the costs of producing helium increased.[82] From 2002 to 2007 helium prices doubled.[83]

As of 2012, the

panhandles of Texas and Oklahoma. New helium plants were scheduled to open in 2012 in Qatar, Russia, and the US state of Wyoming, but they were not expected to ease the shortage.[84]

In 2013, Qatar started up the world's largest helium unit,

2017 Qatar diplomatic crisis severely affected helium production there.[86] 2014 was widely acknowledged to be a year of over-supply in the helium business, following years of renowned shortages.[87] Nasdaq reported (2015) that for Air Products, an international corporation that sells gases for industrial use, helium volumes remain under economic pressure due to feedstock supply constraints.[88]

Characteristics

Atom

electron cloud
distribution (black). The nucleus (upper right) in helium-4 is in reality spherically symmetric and closely resembles the electron cloud, although for more complicated nuclei this is not always the case.

In quantum mechanics

In the perspective of

3-body problem) and helium is no exception. Thus, numerical mathematical methods are required, even to solve the system of one nucleus and two electrons. Such computational chemistry methods have been used to create a quantum mechanical picture of helium electron binding which is accurate to within < 2% of the correct value, in a few computational steps.[89] Such models show that each electron in helium partly screens the nucleus from the other, so that the effective nuclear charge
Zeff which each electron sees is about 1.69 units, not the 2 charges of a classic "bare" helium nucleus.

The nucleus of the helium-4 atom is identical with an

electron cloud. This symmetry reflects similar underlying physics: the pair of neutrons and the pair of protons in helium's nucleus obey the same quantum mechanical rules as do helium's pair of electrons (although the nuclear particles are subject to a different nuclear binding potential), so that all these fermions fully occupy 1s orbitals in pairs, none of them possessing orbital angular momentum, and each cancelling the other's intrinsic spin. This arrangement is thus energetically extremely stable for all these particles and has astrophysical implications.[90] Namely, adding another particle – proton, neutron, or alpha particle – would consume rather than release energy; all systems with mass number 5, as well as beryllium-8 (comprising two alpha particles), are unbound.[91]

For example, the stability and low energy of the electron cloud state in helium accounts for the element's chemical inertness, and also the lack of interaction of helium atoms with each other, producing the lowest melting and boiling points of all the elements. In a similar way, the particular energetic stability of the helium-4 nucleus, produced by similar effects, accounts for the ease of helium-4 production in atomic reactions that involve either heavy-particle emission or fusion. Some stable helium-3 (two protons and one neutron) is produced in fusion reactions from hydrogen, though its estimated abundance in the universe is about 10−5 relative to helium-4.[92]

Binding energy per nucleon of common isotopes. The binding energy per particle of helium-4 is significantly larger than all nearby nuclides.

The unusual stability of the helium-4 nucleus is also important

nucleogenesis and binding energy) and thus, once helium had been formed, no energetic drive was available to make elements 3, 4 and 5.[93] It is barely energetically favorable for helium to fuse into the next element with a lower energy per nucleon, carbon. However, due to the short lifetime of the intermediate beryllium-8, this process requires three helium nuclei striking each other nearly simultaneously (see triple-alpha process).[91]
There was thus no time for significant carbon to be formed in the few minutes after the Big Bang, before the early expanding universe cooled to the temperature and pressure point where helium fusion to carbon was no longer possible. This left the early universe with a very similar ratio of hydrogen/helium as is observed today (3 parts hydrogen to 1 part helium-4 by mass), with nearly all the neutrons in the universe trapped in helium-4.

All heavier elements (including those necessary for rocky planets like the Earth, and for carbon-based or other life) have thus been created since the Big Bang in stars which were hot enough to fuse helium itself. All elements other than hydrogen and helium today account for only 2% of the mass of atomic matter in the universe. Helium-4, by contrast, comprises about 24% of the mass of the universe's ordinary matter—nearly all the ordinary matter that is not hydrogen.[92][94]

Gas and plasma phases

Illuminated light red gas discharge tubes shaped as letters H and e
Helium discharge tube shaped into 'He', the element's symbol.

Helium is the second least reactive noble gas after

specific heat, and sound speed in the gas phase are all greater than any other gas except hydrogen. For these reasons and the small size of helium monatomic molecules, helium diffuses through solids at a rate three times that of air and around 65% that of hydrogen.[30]

Helium is the least water-

Joule–Thomson inversion temperature (of about 32 to 50 K at 1 atmosphere) does it cool upon free expansion.[30]
Once precooled below this temperature, helium can be liquefied through expansion cooling.

Most extraterrestrial helium is plasma in stars, with properties quite different from those of atomic helium. In a plasma, helium's electrons are not bound to its nucleus, resulting in very high electrical conductivity, even when the gas is only partially ionized. The charged particles are highly influenced by magnetic and electric fields. For example, in the solar wind together with ionized hydrogen, the particles interact with the Earth's magnetosphere, giving rise to Birkeland currents and the aurora.[99]

Liquid phase

Phase diagram of helium-4. (Atmospheric pressure is about 0.1 MPa)
superfluidity
. The drop of liquid at the bottom of the glass represents helium spontaneously escaping from the container over the side, to empty out of the container. The energy to drive this process is supplied by the potential energy of the falling helium.

Helium liquifies when cooled below 4.2 K at atmospheric pressure. Unlike any other element, however, helium remains liquid down to a temperature of

superfluid
.

Helium I

Below its

cryogenic
liquids, helium I boils when it is heated and contracts when its temperature is lowered. Below the lambda point, however, helium does not boil, and it expands as the temperature is lowered further.

Helium I has a gas-like

Styrofoam are often used to show where the surface is.[30] This colorless liquid has a very low viscosity and a density of 0.145–0.125 g/mL (between about 0 and 4 K),[100] which is only one-fourth the value expected from classical physics.[30] Quantum mechanics is needed to explain this property and thus both states of liquid helium (helium I and helium II) are called quantum fluids, meaning they display atomic properties on a macroscopic scale. This may be an effect of its boiling point being so close to absolute zero, preventing random molecular motion (thermal energy) from masking the atomic properties.[30]

Helium II

Liquid helium below its lambda point (called helium II) exhibits very unusual characteristics. Due to its high

superfluid phase, but only at much lower temperatures; as a result, less is known about the properties of the isotope.[30]

A cross-sectional drawing showing one vessel inside another. There is a liquid in the outer vessel, and it tends to flow into the inner vessel over its walls.
Unlike ordinary liquids, helium II will creep along surfaces in order to reach an equal level; after a short while, the levels in the two containers will equalize. The Rollin film also covers the interior of the larger container; if it were not sealed, the helium II would creep out and escape.[30]

Helium II is a superfluid, a quantum mechanical state of matter with strange properties. For example, when it flows through capillaries as thin as 10 to 100 nm it has no measurable viscosity.[28] However, when measurements were done between two moving discs, a viscosity comparable to that of gaseous helium was observed. Existing theory explains this using the two-fluid model for helium II. In this model, liquid helium below the lambda point is viewed as containing a proportion of helium atoms in a ground state, which are superfluid and flow with exactly zero viscosity, and a proportion of helium atoms in an excited state, which behave more like an ordinary fluid.[101]

In the fountain effect, a chamber is constructed which is connected to a reservoir of helium II by a sintered disc through which superfluid helium leaks easily but through which non-superfluid helium cannot pass. If the interior of the container is heated, the superfluid helium changes to non-superfluid helium. In order to maintain the equilibrium fraction of superfluid helium, superfluid helium leaks through and increases the pressure, causing liquid to fountain out of the container.[102]

The thermal conductivity of helium II is greater than that of any other known substance, a million times that of helium I and several hundred times that of

valence band of free electrons which serve to transfer the heat. Helium II has no such valence band but nevertheless conducts heat well. The flow of heat is governed by equations that are similar to the wave equation used to characterize sound propagation in air. When heat is introduced, it moves at 20 meters per second at 1.8 K through helium II as waves in a phenomenon known as second sound.[30]

Helium II also exhibits a creeping effect. When a surface extends past the level of helium II, the helium II moves along the surface, against the force of

Solid phases

Helium remains liquid down to

MPa[109] it is ~100 times more compressible than water. Solid helium has a density of 0.214±0.006 g/cm3 at 1.15 K and 66 atm; the projected density at 0 K and 25 bar (2.5 MPa) is 0.187±0.009 g/cm3.[110] At higher temperatures, helium will solidify with sufficient pressure. At room temperature, this requires about 114,000 atm.[111]

Helium-4 and helium-3 both form several crystalline solid phases, all requiring at least 25 bar. They both form an α phase, which has a hexagonal close-packed (hcp) crystal structure, a β phase, which is face-centered cubic (fcc), and a γ phase, which is body-centered cubic (bcc).[112]

Isotopes

There are nine known

stable. In the Earth's atmosphere, one atom is 3
He
for every million that are 4
He
.[28] Unlike most elements, helium's isotopic abundance varies greatly by origin, due to the different formation processes. The most common isotope, helium-4, is produced on Earth by alpha decay of heavier radioactive elements; the alpha particles that emerge are fully ionized helium-4 nuclei. Helium-4 is an unusually stable nucleus because its nucleons are arranged into complete shells. It was also formed in enormous quantities during Big Bang nucleosynthesis.[113]

Helium-3 is present on Earth only in trace amounts. Most of it has been present since Earth's formation, though some falls to Earth trapped in

ppt found in the Earth's atmosphere.[117][118] A number of people, starting with Gerald Kulcinski in 1986,[119] have proposed to explore the Moon, mine lunar regolith, and use the helium-3 for fusion
.

Liquid helium-4 can be cooled to about 1 K (−272.15 °C; −457.87 °F) using

quantum statistics: helium-4 atoms are bosons while helium-3 atoms are fermions).[30] Dilution refrigerators use this immiscibility to achieve temperatures of a few millikelvins.[120]

It is possible to produce

Properties

Table of thermal and physical properties of helium gas at atmospheric pressure:[121][122]

Temperature (K) Density (kg/m^3)
Specific heat
(kJ/kg °C)
Dynamic viscosity
(kg/m s)
Kinematic viscosity
(m^2/s)
Thermal conductivity
(W/m °C)
Thermal diffusivity (m^2/s) Prandtl number
100 5.193 9.63E-06 1.98E-05 0.073 2.89E-05 0.686
120 0.406 5.193 1.07E-05 2.64E-05 0.0819 3.88E-05 0.679
144 0.3379 5.193 1.26E-05 3.71E-05 0.0928 5.28E-05 0.7
200 0.2435 5.193 1.57E-05 6.44E-05 0.1177 9.29E-05 0.69
255 0.1906 5.193 1.82E-05 9.55E-05 0.1357 1.37E-04 0.7
366 0.1328 5.193 2.31E-05 1.74E-04 0.1691 2.45E-04 0.71
477 0.10204 5.193 2.75E-05 2.69E-04 0.197 3.72E-04 0.72
589 0.08282 5.193 3.11E-05 3.76E-04 0.225 5.22E-04 0.72
700 0.07032 5.193 3.48E-05 4.94E-04 0.251 6.66E-04 0.72
800 0.06023 5.193 3.82E-05 6.34E-04 0.275 8.77E-04 0.72
900 0.05451 5.193 4.14E-05 7.59E-04 0.33 1.14E-03 0.687
1000 5.193 4.46E-05 9.14E-04 0.354 1.40E-03 0.654

Compounds

Structure of the helium hydride ion, HHe+
Structure of the suspected fluoroheliate anion, OHeF

Helium has a

plasma by other means. The molecular compounds HeNe, HgHe10, and WHe2, and the molecular ions He+
2
, He2+
2
, HeH+
, and HeD+
have been created this way.[123] HeH+ is also stable in its ground state but is extremely reactive—it is the strongest Brønsted acid known, and therefore can exist only in isolation, as it will protonate any molecule or counteranion it contacts. This technique has also produced the neutral molecule He2, which has a large number of band systems, and HgHe, which is apparently held together only by polarization forces.[30]

Theoretically, other true compounds may be possible, such as helium fluorohydride (HHeF), which would be analogous to HArF, discovered in 2000.[125] Calculations show that two new compounds containing a helium-oxygen bond could be stable.[126] Two new molecular species, predicted using theory, CsFHeO and N(CH3)4FHeO, are derivatives of a metastable FHeO anion first theorized in 2005 by a group from Taiwan.[127]

Helium atoms have been inserted into the hollow carbon cage molecules (the fullerenes) by heating under high pressure. The endohedral fullerene molecules formed are stable at high temperatures. When chemical derivatives of these fullerenes are formed, the helium stays inside.[128] If helium-3 is used, it can be readily observed by helium nuclear magnetic resonance spectroscopy.[129] Many fullerenes containing helium-3 have been reported. Although the helium atoms are not attached by covalent or ionic bonds, these substances have distinct properties and a definite composition, like all stoichiometric chemical compounds.

Under high pressures helium can form compounds with various other elements. Helium-nitrogen

clathrate (He(N2)11) crystals have been grown at room temperature at pressures ca. 10 GPa in a diamond anvil cell.[130] The insulating electride Na2He has been shown to be thermodynamically stable at pressures above 113 GPa. It has a fluorite structure.[131]

Occurrence and production

Natural abundance

Although it is rare on Earth, helium is the second most abundant element in the known Universe, constituting 23% of its baryonic mass. Only hydrogen is more abundant.[28] The vast majority of helium was formed by Big Bang nucleosynthesis one to three minutes after the Big Bang. As such, measurements of its abundance contribute to cosmological models. In stars, it is formed by the nuclear fusion of hydrogen in proton–proton chain reactions and the CNO cycle, part of stellar nucleosynthesis.[113]

In the

Earth's atmosphere, the concentration of helium by volume is only 5.2 parts per million.[132][133] The concentration is low and fairly constant despite the continuous production of new helium because most helium in the Earth's atmosphere escapes into space by several processes.[134][135][136] In the Earth's heterosphere
, a part of the upper atmosphere, helium and hydrogen are the most abundant elements.

Most helium on Earth is a result of

springs, volcanic gas, and meteoric iron. Because helium is trapped in the subsurface under conditions that also trap natural gas, the greatest natural concentrations of helium on the planet are found in natural gas, from which most commercial helium is extracted. The concentration varies in a broad range from a few ppm to more than 7% in a small gas field in San Juan County, New Mexico.[143][144]

As of 2021[update], the world's helium reserves were estimated at 31 billion cubic meters, with a third of that being in Qatar.[145] In 2015 and 2016 additional probable reserves were announced to be under the Rocky Mountains in North America[146] and in the East African Rift.[26]

The Bureau of Land Management (BLM) has proposed an October 2024 plan for managing natural resources in western Colorado. The plan involves closing 543,000 acres to oil and gas leasing while keeping 692,300 acres open. Among the open areas, 165,700 acres have been identified as suitable for helium recovery. The United States possesses an estimated 306 billion cubic feet of recoverable helium, sufficient to meet current consumption rates of 2.15 billion cubic feet per year for approximately 150 years.[147]

Modern extraction and distribution

For large-scale use, helium is extracted by

cryogenic process. This is necessary for applications requiring liquid helium and also allows helium suppliers to reduce the cost of long-distance transportation, as the largest liquid helium containers have more than five times the capacity of the largest gaseous helium tube trailers.[81][149]

In 2008, approximately 169 million

Qatargas managed by Air Liquide) had increased Qatar's fraction of world helium production to 25%, making it the second largest exporter after the United States.[151]
An estimated 54 billion cubic feet (1.5×109 m3) deposit of helium was found in Tanzania in 2016.[152] A large-scale helium plant was opened in Ningxia, China in 2020.[153]

In the United States, most helium is extracted from the natural gas of the

Hugoton and nearby gas fields in Kansas, Oklahoma, and the Panhandle Field in Texas.[81][154] Much of this gas was once sent by pipeline to the National Helium Reserve, but since 2005, this reserve has been depleted and sold off, and it is expected to be largely depleted by 2021[151] under the October 2013 Responsible Helium Administration and Stewardship Act (H.R. 527).[155] The helium fields of the western United States are emerging as an alternate source of helium supply, particularly those of the "Four Corners" region (the states of Arizona, Colorado, New Mexico and Utah).[156]

Diffusion of crude natural gas through special

standard cubic feet (4.2 billion SCM).[158]
At rates of use at that time (72 million SCM per year in the U.S.; see pie chart below) this would have been enough helium for about 58 years of U.S. use, and less than this (perhaps 80% of the time) at world use rates, although factors in saving and processing impact effective reserve numbers.

Helium is generally extracted from natural gas because it is present in air at only a fraction of that of neon, yet the demand for it is far higher. It is estimated that if all neon production were retooled to save helium, 0.1% of the world's helium demands would be satisfied. Similarly, only 1% of the world's helium demands could be satisfied by re-tooling all air distillation plants.

deuterons, but these processes are a completely uneconomical method of production.[160]

Helium is commercially available in either liquid or gaseous form. As a liquid, it can be supplied in small insulated containers called

dewars which hold as much as 1,000 liters of helium, or in large ISO containers, which have nominal capacities as large as 42 m3 (around 11,000 U.S. gallons
). In gaseous form, small quantities of helium are supplied in high-pressure cylinders holding as much as 8 m3 (approximately . 282 standard cubic feet), while large quantities of high-pressure gas are supplied in tube trailers, which have capacities of as much as 4,860 m3 (approx. 172,000 standard cubic feet).

Conservation advocates

According to helium conservationists like Nobel laureate physicist

helium balloons). Prices in the 2000s had been lowered by the decision of the U.S. Congress to sell off the country's large helium stockpile by 2015.[23] According to Richardson, the price needed to be multiplied by 20 to eliminate the excessive wasting of helium. In the 2012 Nuttall et al. paper titled "Stop squandering helium", it was also proposed to create an International Helium Agency that would build a sustainable market for "this precious commodity".[161]

Applications

MRI scanners
.
  1. Cryogenics (32%)
  2. Pressurizing and purging (18%)
  3. Welding (13%)
  4. Controlled atmospheres (18%)
  5. Leak detection (4%)
  6. Breathing mixtures (2%)
  7. Other (13.0%)

While balloons are perhaps the best-known use of helium, they are a minor part of all helium use.

NMR spectrometers.[163] Other major uses were pressurizing and purging systems, welding, maintenance of controlled atmospheres, and leak detection. Other uses by category were relatively minor fractions.[162]

Controlled atmospheres

Helium is used as a protective gas in growing silicon and germanium crystals, in titanium and zirconium production, and in gas chromatography,[108] because it is inert. Because of its inertness, thermally and calorically perfect nature, high speed of sound, and high value of the heat capacity ratio, it is also useful in supersonic wind tunnels[164] and impulse facilities.[165]

Gas tungsten arc welding

Helium is used as a

heat conductivity, like aluminium or copper
.

Minor uses

Industrial leak detection

Photo of a large, metal-framed device (about 3×1×1.5 m) standing in a room.
A dual chamber helium leak detection machine

One industrial application for helium is leak detection. Because helium diffuses through solids three times faster than air, it is used as a tracer gas to detect leaks in high-vacuum equipment (such as cryogenic tanks) and high-pressure containers.[166] The tested object is placed in a chamber, which is then evacuated and filled with helium. The helium that escapes through the leaks is detected by a sensitive device (helium mass spectrometer), even at the leak rates as small as 10−9 mbar·L/s (10−10 Pa·m3/s). The measurement procedure is normally automatic and is called helium integral test. A simpler procedure is to fill the tested object with helium and to manually search for leaks with a hand-held device.[167]

Helium leaks through cracks should not be confused with gas permeation through a bulk material. While helium has documented permeation constants (thus a calculable permeation rate) through glasses, ceramics, and synthetic materials, inert gases such as helium will not permeate most bulk metals.[168]

Flight

Goodyear blimp
.

Because it is

rocket fuel. It is also used to purge fuel and oxidizer from ground support equipment prior to launch and to pre-cool liquid hydrogen in space vehicles. For example, the Saturn V rocket used in the Apollo program needed about 370,000 cubic metres (13 million cubic feet) of helium to launch.[108]

Minor commercial and recreational uses

Helium as a breathing gas has no

turbulent flow and an increase in laminar flow, which requires less breathing.[171][172] At depths below 150 metres (490 ft) divers breathing helium-oxygen mixtures begin to experience tremors and a decrease in psychomotor function, symptoms of high-pressure nervous syndrome.[173] This effect may be countered to some extent by adding an amount of narcotic gas such as hydrogen or nitrogen to a helium–oxygen mixture.[174]

For its inertness and high

thermal conductivity, neutron transparency, and because it does not form radioactive isotopes under reactor conditions, helium is used as a heat-transfer medium in some gas-cooled nuclear reactors.[166]

Helium, mixed with a heavier gas such as xenon, is useful for

thermoacoustic refrigeration due to the resulting high heat capacity ratio and low Prandtl number.[175] The inertness of helium has environmental advantages over conventional refrigeration systems which contribute to ozone depletion or global warming.[176]

Helium is also used in some hard disk drives.[177]

Scientific uses

The use of helium reduces the distorting effects of temperature variations in the space between

index of refraction.[30] This method is especially used in solar telescopes where a vacuum tight telescope tube would be too heavy.[178][179]

Helium is a commonly used carrier gas for gas chromatography.

The age of rocks and minerals that contain uranium and thorium can be estimated by measuring the level of helium with a process known as helium dating.[28][30]

Helium at low temperatures is used in

metric tons of liquid helium to maintain the temperature at 1.9 K (−271.25 °C; −456.25 °F).[180]

Medical uses

Helium was approved for medical use in the United States in April 2020 for humans and animals.[181][182]

As a contaminant

While chemically inert, helium contamination impairs the operation of

microelectromechanical systems (MEMS) such that iPhones may fail.[183]

Inhalation and safety

Effects

Neutral helium at standard conditions is non-toxic, plays no biological role and is found in trace amounts in human blood.

The

resonant frequencies of the vocal tract, which is the amplifier of vocal sound.[28][184] This increase in the resonant frequency of the amplifier (the vocal tract) gives increased amplification to the high-frequency components of the sound wave produced by the direct vibration of the vocal folds, compared to the case when the voice box is filled with air. When a person speaks after inhaling helium gas, the muscles that control the voice box still move in the same way as when the voice box is filled with air; therefore the fundamental frequency (sometimes called pitch) produced by direct vibration of the vocal folds does not change.[185] However, the high-frequency-preferred amplification causes a change in timbre of the amplified sound, resulting in a reedy, duck-like vocal quality. The opposite effect, lowering resonant frequencies, can be obtained by inhaling a dense gas such as sulfur hexafluoride or xenon
.

Hazards

Inhaling helium can be dangerous if done to excess, since helium is a simple asphyxiant and so displaces oxygen needed for normal respiration.[28][186] Fatalities have been recorded, including a youth who suffocated in Vancouver in 2003 and two adults who suffocated in South Florida in 2006.[187][188] In 1998, an Australian girl from Victoria fell unconscious and temporarily turned blue after inhaling the entire contents of a party balloon.[189][190][191] Inhaling helium directly from pressurized cylinders or even balloon filling valves is extremely dangerous, as high flow rate and pressure can result in barotrauma, fatally rupturing lung tissue.[186][192]

Death caused by helium is rare. The first media-recorded case was that of a 15-year-old girl from Texas who died in 1998 from helium inhalation at a friend's party; the exact type of helium death is unidentified.[189][190][191]

In the United States, only two fatalities were reported between 2000 and 2004, including a man who died in North Carolina of barotrauma in 2002.[187][192] A youth asphyxiated in Vancouver during 2003, and a 27-year-old man in Australia had an embolism after breathing from a cylinder in 2000.[187] Since then, two adults asphyxiated in South Florida in 2006,[187][188][193] and there were cases in 2009 and 2010, one of whom was a Californian youth who was found with a bag over his head, attached to a helium tank,[194] and another teenager in Northern Ireland died of asphyxiation.[195] At Eagle Point, Oregon a teenage girl died in 2012 from barotrauma at a party.[196][197][198] A girl from Michigan died from hypoxia later in the year.[199]

On February 4, 2015, it was revealed that, during the recording of their main TV show on January 28, a 12-year-old member (name withheld) of Japanese all-girl singing group

3B Junior suffered from air embolism, losing consciousness and falling into a coma as a result of air bubbles blocking the flow of blood to the brain after inhaling huge quantities of helium as part of a game. The incident was not made public until a week later.[200][201] The staff of TV Asahi held an emergency press conference to communicate that the member had been taken to the hospital and is showing signs of rehabilitation such as moving eyes and limbs, but her consciousness has not yet been sufficiently recovered. Police have launched an investigation due to a neglect of safety measures.[202][203]

The safety issues for cryogenic helium are similar to those of liquid nitrogen; its extremely low temperatures can result in cold burns, and the liquid-to-gas expansion ratio can cause explosions if no pressure-relief devices are installed. Containers of helium gas at 5 to 10 K should be handled as if they contain liquid helium due to the rapid and significant thermal expansion that occurs when helium gas at less than 10 K is warmed to room temperature.[108]

At high pressures (more than about 20 atm or two 

MPa), a mixture of helium and oxygen (heliox) can lead to high-pressure nervous syndrome, a sort of reverse-anesthetic effect; adding a small amount of nitrogen to the mixture can alleviate the problem.[204][173]

See also

Notes

  1. ^ A few authors dispute the placement of helium in the noble gas column, preferring to place it above beryllium with the alkaline earth metals. They do so on the grounds of helium's 1s2 electron configuration, which is analogous to the ns2 valence configurations of the alkaline earth metals, and furthermore point to some specific trends that are more regular if helium is placed in group 2.[8][9][10][11][12] These tend to relate to kainosymmetry and the first-row anomaly: the first orbital of any type is unusually small, since unlike its higher analogues, it does not experience interelectronic repulsion from a smaller orbital of the same type. Because of this trend in the sizes of orbitals, a large difference in atomic radii between the first and second members of each main group is seen in groups 1 and 13–17: it exists between neon and argon, and between helium and beryllium, but not between helium and neon. This similarly affects the noble gases' boiling points and solubilities in water, where helium is too close to neon, and the large difference characteristic between the first two elements of a group appears only between neon and argon. Moving helium to group 2 makes this trend consistent in groups 2 and 18 as well, by making helium the first group 2 element and neon the first group 18 element: both exhibit the characteristic properties of a kainosymmetric first element of a group.[13] However, the classification of helium with the other noble gases remains near-universal, as its extraordinary inertness is extremely close to that of the other light noble gases neon and argon.[14]

References

  1. ^ "Standard Atomic Weights: Helium". CIAAW. 1983.
  2. ISSN 1365-3075
    .
  3. ^ Shuen-Chen Hwang, Robert D. Lein, Daniel A. Morgan (2005). "Noble Gases". Kirk Othmer Encyclopedia of Chemical Technology. Wiley. pp. 343–383. doi:10.1002/0471238961.0701190508230114.a01.
  4. S2CID 20459726
    .
  5. ^ Magnetic susceptibility of the elements and inorganic compounds, in Handbook of Chemistry and Physics 81st edition, CRC press.
  6. .
  7. ^ .
  8. .
  9. ^ Bent Weberg, Libby (18 January 2019). ""The" periodic table". Chemical & Engineering News. 97 (3). Retrieved 27 March 2020.
  10. PMID 23609097
    .
  11. . Retrieved 19 June 2020.
  12. ^ Labarca, Martín; Srivaths, Akash (2016). "On the Placement of Hydrogen and Helium in the Periodic System: A New Approach". Bulgarian Journal of Science Education. 25 (4): 514–530. Archived from the original on 29 November 2021. Retrieved 19 June 2020.
  13. .
  14. from the original on 19 May 2016.
  15. ^ Rayet, G. (1868) "Analyse spectral des protubérances observées, pendant l'éclipse totale de Soleil visible le 18 août 1868, à la presqu'île de Malacca" (Spectral analysis of the protuberances observed during the total solar eclipse, seen on 18 August 1868, from the Malacca peninsula), Comptes rendus ... , 67 : 757–759. From p. 758: " ... je vis immédiatement une série de neuf lignes brillantes qui ... me semblent devoir être assimilées aux lignes principales du spectre solaire, B, D, E, b, une ligne inconnue, F, et deux lignes du groupe G." ( ... I saw immediately a series of nine bright lines that ... seemed to me should be classed as the principal lines of the solar spectrum, B, D, E, b, an unknown line, F, and two lines of the group G.)
  16. ^ Captain C. T. Haig (1868) "Account of spectroscopic observations of the eclipse of the sun, August 18th, 1868" Proceedings of the Royal Society of London, 17 : 74–80. From p. 74: "I may state at once that I observed the spectra of two red flames close to each other, and in their spectra two broad bright bands quite sharply defined, one rose-madder and the other light golden."
  17. ^ Pogson filed his observations of the 1868 eclipse with the local Indian government, but his report wasn't published. (Biman B. Nath, The Story of Helium and the Birth of Astrophysics (New York, New York: Springer, 2013), p. 8.) Nevertheless, Lockyer quoted from his report. From p. 320 Archived 17 August 2018 at the Wayback Machine of Lockyer, J. Norman (1896) "The story of helium. Prologue," Nature, 53 : 319–322 : "Pogson, in referring to the eclipse of 1868, said that the yellow line was "at D, or near D." "
  18. ^ Lieutenant John Herschel (1868) "Account of the solar eclipse of 1868, as seen at Jamkandi in the Bombay Presidency," Proceedings of the Royal Society of London, 17 : 104–120. From p. 113: As the moment of the total solar eclipse approached, " ... I recorded an increasing brilliancy in the spectrum in the neighborhood of D, so great in fact as to prevent any measurement of that line till an opportune cloud moderated the light. I am not prepared to offer any explanation of this." From p. 117: "I also consider that there can be no question that the ORANGE LINE was identical with D, so far as the capacity of the instrument to establish any such identity is concerned."
  19. ^ In his initial report to the French Academy of Sciences about the 1868 eclipse, Janssen made no mention of a yellow line in the solar spectrum. See: However, subsequently, in an unpublished letter of 19 December 1868 to Charles Sainte-Claire Deville, Janssen asked Deville to inform the French Academy of Sciences that : "Several observers have claimed the bright D line as forming part of the spectrum of the prominences on 18 August. The bright yellow line did indeed lie very close to D, but the light was more refrangible [i.e., of shorter wavelength] than those of the D lines. My subsequent studies of the Sun have shown the accuracy of what I state here." (See: (Launay, 2012), p. 45.)
  20. ^ a b "Cleveite". Mindat.org. Retrieved 14 February 2020.
  21. ^ "Uraninite". Mindat.org. Retrieved 14 February 2020.
  22. ^ Rose, Melinda (October 2008). "Helium: Up, Up and Away?". Photonics Spectra. Archived from the original on 22 August 2010. Retrieved 27 February 2010. For a more authoritative but older 1996 pie chart showing U.S. helium use by sector, showing much the same result, see the chart reproduced in "Applications" section of this article.
  23. ^ a b Connor, Steve (23 August 2010). "Why the world is running out of helium". The Independent. London. Archived from the original on 27 September 2013. Retrieved 16 September 2013.
  24. ^ Siegel, Ethan (12 December 2012). "Why the World Will Run Out of Helium". Starts with a Bang. Scienceblogs.com. Archived from the original on 14 September 2013. Retrieved 16 September 2013.
  25. ^ Szondy, David (24 August 2015). "We may not be running out of helium after all". www.gizmag.com. Archived from the original on 25 March 2016. Retrieved 1 April 2016.
  26. ^ a b Sample, Ian (28 June 2016). "Huge helium gas find in east Africa averts medical shortage". The Guardian. Archived from the original on 29 June 2016. Retrieved 29 June 2016.
  27. .
  28. ^ .
  29. . Retrieved 3 June 2018.
  30. ^ .
  31. Online Etymology Dictionary
    .
  32. from the original on December 2, 2016. Retrieved February 22, 2016. Frankland and Lockyer find the yellow prominences to give a very decided bright line not far from D, but hitherto not identified with any terrestrial flame. It seems to indicate a new substance, which they propose to call Helium
  33. .
  34. ^ Palmieri, Luigi (1881). "La riga dell'Helium apparsa in una recente sublimazione vesuviana" [The line of helium appeared in a recently sublimated material [from Mt.] Vesuvius.]. Rendiconto dell'Accademia delle Scienze Fisiche e Matematiche (Naples, Italy). 20: 223. Archived from the original on 1 September 2018. Retrieved 1 May 2017. Raccolsi alcun tempo fa una sostanza amorfa di consistenza butirracea e di colore giallo sbiadato sublimata sull'orlo di una fumarola prossima alla bocca di eruzione. Saggiata questa sublimazione allo spettroscopio, ho ravvisato le righe del sodio e del potassio ed una lineare ben distinta che corrisponde esattamente alla D3 che è quella dell'Helium. Do per ora il semplice annunzio del fatto, proponendomi di ritornare sopra questo argomento, dopo di aver sottoposta la sublimazione ad una analisi chimica. (I collected some time ago an amorphous substance having a buttery consistency and a faded yellow color which had sublimated on the rim of a fumarole near the mouth of the eruption. Having analyzed this sublimated substance with a spectroscope, I recognized the lines of sodium and potassium and a very distinct linear line which corresponds exactly to D3, which is that of helium. For the present, I'm making a mere announcement of the fact, proposing to return to this subject after having subjected the sublimate to a chemical analysis.)
  35. ^ Kirk, Wendy L. "Cleveite [not Clevite] and helium". Museums & Collections Blog. University College London. Archived from the original on 18 October 2018. Retrieved 18 August 2017.
  36. S2CID 129872109
    .
  37. .
  38. .
  39. .
  40. ^ See:
  41. ^ See:
  42. .
  43. ^ Weaver, E.R. (1919). Circular of the Bureau of Standards No. 81: Bibliography of Scientific Literature Relating to Helium (PDF). Washington, D.C., USA: U.S. Government Printing Office. p. 6.
  44. ^ Hillebrand (1890) "On the occurrence of nitrogen in uraninite and on the composition of uraninite in general," Bulletin of the U.S. Geological Survey, no. 78, pp. 43–79.
  45. ^ Munday, Pat (1999). John A. Garraty; Mark C. Carnes (eds.). Biographical entry for W.F. Hillebrand (1853–1925), geochemist and U.S. Bureau of Standards administrator in American National Biography. Vol. 10–11. Oxford University Press. pp. 808–9, 227–8.
  46. .
  47. ^ Onnes, H. Kamerlingh (1908) "The liquefaction of helium," Communications from the Physical Laboratory at the University of Leiden, 9 (108) : 1–23.
  48. doi:10.1063/1.2897948. Archived from the original
    (PDF) on June 25, 2008. Retrieved 2008-07-20.
  49. ^ See:
    • Preliminary notice: Keesom, W. H. (17 July 1926) Letters to the Editor: "Solidification of helium," Nature, 118 : 81.
    • Preliminary notice: Keesom, W. H. (1926) "L'hélium solidifié," Archived 2016-10-22 at the Wayback Machine Comptes rendus ... , 183 : 26.
    • Keesom, W. H. (1926) "Solid Helium," Communications from the Physical Laboratory at the University of Leiden, 17 (184) .
  50. ^ "Coldest Cold". Time Inc. 1929-06-10. Archived from the original on 2008-12-06. Retrieved 2008-07-27.
  51. ^ .
  52. .
  53. .
  54. ^ .
  55. .
  56. .
  57. (PDF) from the original on 2019-08-24. Retrieved 2019-08-24.
  58. .
  59. .
  60. .
  61. .
  62. .
  63. .
  64. .
  65. .
  66. .
  67. .
  68. .
  69. ^ "Discovery of Helium in Natural Gas at the University of Kansas". National Historic Chemical Landmarks. American Chemical Society. Archived from the original on 2014-02-26. Retrieved 2014-02-21.
  70. S2CID 27441003
    .
  71. .
  72. ^ Emme, Eugene M. comp., ed. (1961). "Aeronautics and Astronautics Chronology, 1920–1924". Aeronautics and Astronautics: An American Chronology of Science and Technology in the Exploration of Space, 1915–1960. Washington, D.C.: NASA. pp. 11–19. Archived from the original on 2019-07-14. Retrieved 2006-10-27.
  73. . At the origin of the helium leak detection method was the Manhattan Project and the unprecedented leak-tightness requirements needed by the uranium enrichment plants. The required sensitivity needed for the leak checking led to the choice of a mass spectrometer designed by Dr. A.O.C. Nier tuned on the helium mass.
  74. .
  75. ^ "Conservation Helium Sale" (PDF). Federal Register. 70 (193): 58464. 2005-10-06. Archived (PDF) from the original on 2008-10-31. Retrieved 2008-07-20.
  76. ^
  77. ^ Pub. L. 104–273: Helium Privatization Act of 1996 (text) (PDF)
  78. from the original on 2008-03-27. Retrieved 2008-07-20.
  79. ^ Mullins, P. V.; Goodling, R. M. (1951). Helium. Bureau of Mines / Minerals yearbook 1949. pp. 599–602. Archived from the original on 2008-12-06. Retrieved 2008-07-20.
  80. ^ "Helium End User Statistic" (PDF). U.S. Geological Survey. Archived (PDF) from the original on 2008-09-21. Retrieved 2008-07-20.
  81. ^
    S2CID 109060534
    .
  82. .
  83. ^ Basu, Sourish (October 2007). Yam, Philip (ed.). "Updates: Into Thin Air". Scientific American. Vol. 297, no. 4. Scientific American, Inc. p. 18. Archived from the original on 2008-12-06. Retrieved 2008-08-04.
  84. ^ a b c Newcomb, Tim (21 August 2012). "There's a Helium Shortage On—and It's Affecting More than Just Balloons". Time. Archived from the original on 29 December 2013. Retrieved 2013-09-16.
  85. ^ "Air Liquide | the world leader in gases, technologies and services for Industry and Health". 19 February 2015. Archived from the original on 2014-09-14. Retrieved 2015-05-25. Air Liquide Press Release.
  86. ^ "Middle East turmoil is disrupting a vital resource for nuclear energy, space flight and birthday balloons". washingtonpost.com. 26 June 2017. Archived from the original on 26 June 2017. Retrieved 26 June 2017.
  87. ^ Cockerill, Rob (25 December 2014). "2015 – What lies ahead? Part 1". Gasworld. Archived from the original on 2015-01-17. Retrieved 15 September 2021.
  88. ^ "Will Air Products' (APD) Earnings Surprise Estimates in Q2? - Analyst Blog". NASDAQ.com. April 28, 2015. Archived from the original on July 15, 2019. Retrieved August 4, 2019.
  89. ^ Watkins, Thayer. "The Old Quantum Physics of Niels Bohr and the Spectrum of Helium: A Modified Version of the Bohr Model". San Jose State University. Archived from the original on 2009-05-26. Retrieved 2009-06-24.
  90. .
  91. ^ .
  92. ^ .
  93. .
  94. .
  95. .
  96. .
  97. .
  98. .
  99. .
  100. .
  101. .
  102. ^ Warner, Brent. "Introduction to Liquid Helium". NASA. Archived from the original on 2005-09-01. Retrieved 2007-01-05.
  103. .
  104. .
  105. ^ Ellis, Fred M. (2005). "Third sound". Wesleyan Quantum Fluids Laboratory. Archived from the original on 2007-06-21. Retrieved 2008-07-23.
  106. .
  107. ^ "Solid Helium". Department of Physics University of Alberta. 2005-10-05. Archived from the original on May 31, 2008. Retrieved 2008-07-20.
  108. ^ .
  109. .
  110. .
  111. .
  112. .
  113. ^ .
  114. ^ a b Anderson, Don L.; Foulger, G. R.; Meibom, A. (2006-09-02). "Helium Fundamentals". MantlePlumes.org. Archived from the original on 2007-02-08. Retrieved 2008-07-20.
  115. .
  116. .
  117. ^ "Lunar Mining of Helium-3". Fusion Technology Institute of the University of Wisconsin-Madison. 2007-10-19. Archived from the original on 2010-06-09. Retrieved 2008-07-09.
  118. (PDF) from the original on 2008-07-05. Retrieved 2008-07-20.
  119. ^ Hedman, Eric R. (2006-01-16). "A fascinating hour with Gerald Kulcinski". The Space Review. Archived from the original on 2011-01-09. Retrieved 2008-07-20.
  120. S2CID 244005391
    .
  121. .
  122. .
  123. .
  124. from the original on 29 August 2017. Retrieved 24 August 2019.
  125. .
  126. ^ Grochala, W. (2009). "On Chemical Bonding Between Helium and Oxygen". Polish Journal of Chemistry. 83: 87–122.
  127. ^ "Collapse of helium's chemical nobility predicted by Polish chemist" (PDF). Archived from the original (PDF) on 2009-03-19. Retrieved 2009-05-15.
  128. S2CID 41794612
    .
  129. .
  130. .
  131. .
  132. .
  133. ^ "The Atmosphere: Introduction". JetStream – Online School for Weather. National Weather Service. 2007-08-29. Archived from the original on January 13, 2008. Retrieved 2008-07-12.
  134. .
  135. ^ Strobel, Nick (2007). "Atmospheres". Nick Strobel's Astronomy Notes. Archived from the original on 2010-09-19. Retrieved 2007-09-25.
  136. ^ G. Brent Dalrymple. "How Good Are Those Young-Earth Arguments?". Archived from the original on 2011-06-07. Retrieved 2011-02-13.
  137. ^ "Pitchblende". Mindat.org. Retrieved 14 February 2020.
  138. ^ "Monazite". Mindat.org. Retrieved 14 February 2020.
  139. ^ "Monazite-(Ce)". Mindat.org. Retrieved 14 February 2020.
  140. S2CID 4297697
    .
  141. .
  142. .
  143. (PDF) from the original on 2017-08-09. Retrieved 2019-01-29.
  144. S2CID 29360086. Archived from the original
    (PDF) on 2012-03-30. Retrieved 2008-07-21.
  145. ^ "Helium" (PDF). Mineral Commodity Summaries. U.S. geological survey. January 2021. Retrieved 12 February 2022.
  146. ^ "Press release: The unbearable lightness of helium..." European Association of Geochemistry. Archived from the original on 2015-09-06. Retrieved 5 March 2017.
  147. ^ Rom, Zoë (2024-11-18). "How a dwindling helium supply is impacting public land management". High Country News. Retrieved 2024-11-24.
  148. ^ Winter, Mark (2008). "Helium: the essentials". University of Sheffield. Archived from the original on 2008-07-14. Retrieved 2008-07-14.
  149. ^ Cai, Z.; et al. (2007). Modelling Helium Markets (PDF). University of Cambridge. Archived from the original (PDF) on 2009-03-26. Retrieved 2008-07-14.
  150. ^ Helium (PDF). Mineral Commodity Summaries. U.S. Geological Survey. 2009. pp. 74–75. Archived (PDF) from the original on 2009-08-14. Retrieved 2009-12-19.
  151. ^ a b "Air Liquide and Linde in Helium Hunt as Texas Reserves Dry Up". Bloomberg. 2014. Archived from the original on 2017-03-10. Retrieved 2017-03-07.
  152. ^ Briggs, Helen (28 June 2016). "Helium discovery a 'game-changer'". BBC News. Archived from the original on 28 June 2016. Retrieved 2016-06-28.
  153. ^ Chen, Stephen (28 Jul 2020). "China opens first large-scale helium plant as it tries to reduce reliance on US imports". South China Morning Post. Beijing, China. Retrieved 28 Jul 2020.
  154. ^ Pierce, A. P., Gott, G. B., and Mytton, J. W. (1964). "Uranium and Helium in the Panhandle Gas Field Texas, and Adjacent Areas", Geological Survey Professional Paper 454-G, Washington:US Government Printing Office
  155. ^ "Responsible Helium Administration and Stewardship Act (H.R. 527)". House Committee on Natural Resources. Committee on Natural Resources United States House of Representatives. Archived from the original on 2017-03-06. Retrieved 5 March 2017.
  156. ^ Fresne, Patrick (2023-07-23). "When a Rush Begins: A Field Guide to the Helium Hopefuls of the United States". Gold and Revolution. Retrieved 2023-07-30.
  157. S2CID 109199653
    .
  158. ^ Committee on the Impact of Selling, Table 4.2 Archived 2014-09-10 at the Wayback Machine
  159. ^ Committee on the Impact of Selling, see page 40 Archived 2014-05-29 at the Wayback Machine for the estimate of total theoretical helium production by neon and liquid air plants
  160. S2CID 96565428
    .
  161. .
  162. ^ a b U.S. Department of the Interior, U.S. Geological Survey (2015). "Helium" (PDF). Mineral Commodity Summaries 2014. pp. 72–73. Archived from the original on 2014-04-04. Retrieved 2014-05-31.
  163. ^ Helium sell-off risks future supply Archived 2012-06-10 at the Wayback Machine, Michael Banks, Physics World, 27 January 2010. accessed February 27, 2010.
  164. .
  165. ^ Morris, C.I. (2001). Shock Induced Combustion in High Speed Wedge Flows (PDF). Stanford University Thesis. Archived from the original (PDF) on 2009-03-04.
  166. ^ .
  167. .
  168. .
  169. . Archived from the original on 2010-12-25. Retrieved 2008-06-27.
  170. . Archived from the original on 2008-12-06. Retrieved 2008-08-06.
  171. .
  172. ^ "Heliox21". Linde Gas Therapeutics. 27 January 2009. Archived from the original on 10 September 2011. Retrieved 13 April 2011.
  173. ^
    PMID 4619860
    . Archived from the original on 2010-12-25. Retrieved 2008-04-07.
  174. . Archived from the original on 2008-12-06. Retrieved 2008-06-24.
  175. .
  176. .
  177. ^ Gallagher, Sean (November 4, 2013). "HGST balloons disk capacity with helium-filled 6TB drive". Ars Technica. Archived from the original on July 7, 2017. Retrieved June 14, 2017.
  178. .
  179. .
  180. ^ "LHC: Facts and Figures" (PDF). CERN. Archived from the original (PDF) on 2011-07-06. Retrieved 2008-04-30.
  181. ^ "Helium, USP: FDA-Approved Drugs". U.S. Food and Drug Administration. Retrieved 30 April 2020.
  182. ^ "FDA approval letter" (PDF). 14 April 2020. Retrieved 30 April 2020.
  183. ^ Oberhaus, Daniel (30 October 2018). "Why a Helium Leak Disabled Every iPhone in a Medical Facility". Motherboard. Vice Media. Archived from the original on 1 November 2018. Retrieved 31 October 2018.
  184. PMID 1226588
    . Archived from the original on 2011-01-27. Retrieved 2008-08-09.
  185. ^ "Why does helium make your voice squeaky?". 14 July 2000. Archived from the original on 24 March 2013. Retrieved 2013-06-08.
  186. ^
    S2CID 22894287
    .
  187. ^ a b c d Montgomery B.; Hayes S. (2006-06-03). "2 found dead under deflated balloon". Tampa Bay Times. Archived from the original on 2013-12-30. Retrieved 2013-12-29.
  188. ^ a b "Two students die after breathing helium". CBC. 4 June 2006. Archived from the original on 31 December 2013. Retrieved 30 December 2013.
  189. ^ a b "Helium inhalation – it's no laughing matter – Article courtesy of BOC Gases". Balloon Artists & Suppliers Association of Australasia Ltd. Archived from the original on 2014-01-14. Retrieved 2014-01-03.
  190. ^ a b "Dangers of Helium Inhalation". Lou's Balloons. Archived from the original on 2014-01-04.
  191. ^ a b "Helium Gas Safety & Data Sheet". bouncetime. Archived from the original on 2015-04-22. Retrieved 2014-01-03.
  192. ^ a b Engber, Daniel (2006-06-13). "Stay Out of That Balloon!". Slate.com. Archived from the original on 2011-10-20. Retrieved 2008-07-14.
  193. PMID 10720344
    .
  194. ^ "Teen Dies After Inhaling Helium". KTLA News. RIVERSIDE: ktla.com. January 6, 2010. Archived from the original on January 9, 2012. Retrieved 2010-11-19.
  195. ^ "Tributes to 'helium death' teenager from Newtownabbey". BBC Online. 19 November 2010. Archived from the original on 20 November 2010. Retrieved 2010-11-19.
  196. ^ Mather, Kate (24 February 2012). "Parents of Eagle Point girl who died from inhaling helium hope to save others from same fate". The Oregonian. Archived from the original on 6 December 2013. Retrieved 2013-06-08.
  197. ^ Barnard, Jeff (22 February 2012). "Ashley Long, Oregon Teenager, Dies After Inhaling Helium at Wild Party (VIDEO)". Huffington Post. Archived from the original on 31 December 2013. Retrieved 30 December 2013.
  198. ^ Barnard, Jeff (23 February 2012). "Teen girl dies after inhaling helium at party". Today. AP. Archived from the original on 2013-12-30. Retrieved 2013-12-30.
  199. ^ The Oxford Leader Newspaper, Sherman Publications, Inc., December 3, 2012.
  200. ^ "テレ朝事故で分かったヘリウム変声缶の危険性 意識を失うケースの大半が子ども" (in Japanese). 5 February 2015. Archived from the original on 5 February 2015. Retrieved 2015-02-05.
  201. ^ Rayman, Noah (5 February 2015). "J-Pop Teen Star Left in Coma After Inhaling Helium for TV Stunt". Time. Archived from the original on 5 February 2015. Retrieved 2015-02-06.
  202. ^ "アイドルが収録中に倒れ病院搬送 テレ朝、ヘリウムガス吸引" (in Japanese). 4 April 2015. Archived from the original on 4 February 2015. Retrieved 2015-02-04.
    "テレビ番組収録中、12歳アイドルが意識失い救急搬送 ヘリウムガスが原因か" (in Japanese). 4 February 2015. Archived from the original on 4 February 2015. Retrieved 2015-02-04.
    "テレ朝謝罪、12歳アイドルがヘリウム吸い救急搬送" (in Japanese). 4 February 2015. Archived from the original on 2015-02-04. Retrieved 2015-02-04.
    "3b Junior idol in coma after inhaling helium on TV Asahi program". 4 February 2015. Archived from the original on 4 February 2015. Retrieved 2015-02-04.
    "アイドル救急搬送騒動で制作会社が実績削除の不可解" (in Japanese). 4 February 2015. Archived from the original on 4 February 2015. Retrieved 2015-02-04.
  203. ^ "Japanese child star in coma after helium stunt goes wrong". BBC. 5 February 2015. Archived from the original on 5 February 2015. Retrieved 2015-02-06.
  204. PMID 6853282
    .

Bibliography

Listen to this article (58 minutes)
Spoken Wikipedia icon
Audio help · More spoken articles
)

General

More detail

Miscellaneous

Helium shortage

This page is based on the copyrighted Wikipedia article: Helium. Articles is available under the CC BY-SA 3.0 license; additional terms may apply.Privacy Policy