Symmetric game
In
Symmetry in 2x2 games
E | F | |
---|---|---|
E | a, a | b, c |
F | c, b | d, d |
Only 12 out of the 144 ordinally distinct
The requirements for a game to be ordinally symmetric are weaker, there it need only be the case that the ordinal ranking of the payoffs conform to the schema on the right.
Symmetry and equilibria
Nash (1951) shows that every finite symmetric game has a symmetric
Uncorrelated asymmetries: payoff neutral asymmetries
Symmetries here refer to symmetries in payoffs. Biologists often refer to asymmetries in payoffs between players in a game as correlated asymmetries. These are in contrast to
The general case
A game with a payoff of for player , where is player 's strategy set and , is considered symmetric if for any permutation ,
Partha Dasgupta and Eric Maskin give the following definition, which has been repeated since in the economics literature
However, this is a stronger condition that implies the game is not only symmetric in the sense above, but is a common-interest game, in the sense that all players' payoffs are identical.[1]
References
- Shih-Fen Cheng, Daniel M. Reeves, Yevgeniy Vorobeychik and Michael P. Wellman. Notes on Equilibria in Symmetric Games, International Joint Conference on Autonomous Agents & Multi Agent Systems, 6th Workshop On Game Theoretic And Decision Theoretic Agents, New York City, NY, August 2004. [1]
- Symmetric Game at Gametheory.net
- JSTOR 2297588.
- JSTOR 1969529.
- Emmons, Scott; Oesterheld, Caspar; Critch, Andrew; Conitzer, Vincent; Russell, Stuart (2022). "Symmetry, Equilibria, and Robustness in Common-Payoff Games" (PDF). Proceedings of the International Conference on Machine Learning (ICML). PMLR 162. Retrieved 21 April 2024.
Further reading
- David Robinson; David Goforth (2005). The topology of the 2x2 games: a new periodic table. Routledge. ISBN 978-0-415-33609-3.
- Notes on Equilibria in Symmetric Games