Vein of Galen aneurysmal malformations

Source: Wikipedia, the free encyclopedia.
Vein of Galen aneurysmal malformations
Other namesVein of Galen aneurysmal dilations
Axial image from computerized tomography angiogram showing arteriovenous communication in vein of Galen malformation

Vein of Galen aneurysmal malformations (VGAMs) and Vein of Galen aneurysmal dilations (VGADs) are the most frequent arteriovenous malformations in infants and fetuses.[1][2] A VGAM consists of a tangled mass of dilated vessels supplied by an enlarged artery.[3] The malformation increases greatly in size with age, although the mechanism of the increase is unknown.[3] Dilation of the great cerebral vein of Galen is a secondary result of the force of arterial blood either directly from an artery via an arteriovenous fistula or by way of a tributary vein that receives the blood directly from an artery.[1][3] There is usually a venous anomaly downstream from the draining vein that, together with the high blood flow into the great cerebral vein of Galen causes its dilation.[4] The right sided cardiac chambers and pulmonary arteries also develop mild to severe dilation.[5]

Signs and symptoms

3D reconstruction of CTA showing vein of Galen malformation.

Malformations often lead to cardiac failure, cranial bruits (pattern 1),

hydrocephaly, and subarachnoid hemorrhage in neonates.[4] The heart failure is due to the size of the arteriovenous shunt that can steal 80% or more of the cardiac output, with large volumes of blood under high pressure returning to the right heart and pulmonary circulation and sinus venosus atrial septal defects.[4][5] It is also the most common cause of death in such patients.[6]

Associated conditions

Non-developmental syndromes also directly or indirectly affect the Great Cerebral Vein of Galen, although they are extremely rare. These include superior vena cava syndrome (SVCS), and thrombosis of the lateral sinus, superior sagittal sinus, internal jugular vein, or of the Great Cerebral Vein of Galen itself.[citation needed]

Genetics

10% of vein of Galen aneurysmal malformations are associated with deleterious heterozygous mutations of EPHB4[7]

Another study found that 30% of cases were associated with mutations in EPH receptor B4 (

EPHB4) gene.[8]

Diagnosis

Testing for a malformed vein of Galen is indicated when a patient has heart failure which has no obvious cause.

Doppler.[4] A malformed Great Cerebral Vein will be noticeably enlarged. Ultrasound is a particularly useful tool for vein of Galen malformations because so many cases occur in infancy and ultrasound can make diagnoses prenatally. Many cases are diagnosed only during autopsy as congestive heart failure occurs very early.[10]

Classification

Five patterns of Galenic arteriovenous malformations have been described:

'Patterns
Pattern 1 Many vessels, including anterior cerebral arteries, thalamic perforating arteries, and superior cerebellar arteries discharge into the vein of Galen.[10]
Pattern 2 A single posterior choroidal artery drains into the vein of Galen.[10]
Pattern 3 One or both posterior choroidal and one or both anterior cerebral arteries drain directly into the Galenic system.[10]
Pattern 4 An angiomatous network of posterior choroidal and thalamic perforating arteries enter the Vein of Galen directly.[10]
Pattern 5 A high flow arteriovenous malformation in the right inferior frontal lobe drains via the inferior sagittal sinus and pericallosal vein into the Vein of Galen.[4]

These malformations develop in utero by the persistence of fistulae between primitive pia arachnoidal arteries and pial veins that cross each other at right angles.[4] Because the primitive Galenic system and the primitive choroidal system lie close together, an arteriovenous malformation involving the primitive choroidal system will inevitably involve the Galenic vein.[11] Larger arteriovenous shunts correlate with greater hemodynamic effects and earlier symptom onset; small arteriovenous shunts correlate with greater local mass effect causing progressive neurological impairment.[4]

Treatment

Treatment depends on the anatomy of the malformation as determined by

Magnetic Resonance Imaging (MRI).[4]

Surgical

Head circumference measurements should be obtained regularly and monitored carefully to detect

Radiotherapy, also called radiosurgery, involves the use of focused beams to damage the blood vessel.[12] Radiotherapy is often not pursued as a treatment because the effects of the procedure can take months or years and there is risk of damaging adjacent brain tissue.[12]

Medical care

Surgery is not always an option when the anatomy of the malformation creates too much of a risk. Recent improvements in

Seizures usually are managed with antiepileptic medications.[15]

Prognosis

The complications that are usually associated with vein of Galen malformations are usually intracranial hemorrhages.[16] Over half the patients with VGAM have a malformation that cannot be corrected. Patients frequently die in the neonatal period or in early infancy.[5]

Society and culture

Vein of Galen malformations are devastating complications. Studies have shown that 77% of untreated cases result in mortality.[13] Even after surgical treatment, the mortality rate remains as high as 39.4%.[13] Most cases occur during infancy when the mortality rates are at their highest. Vein of Galen malformations are a relatively unknown condition, attributed to the rareness of the malformations. Therefore, when a child is diagnosed with a faulty Great Cerebral Vein of Galen, most parents know little to nothing about what they are dealing with.[citation needed]

References

  1. ^
    PMID 5459527. Retrieved October 25, 2009.[permanent dead link
    ]
  2. PMID 20591266.{{cite journal}}: CS1 maint: multiple names: authors list (link
    )
  3. ^ .
  4. ^ .
  5. ^ .
  6. .
  7. .
  8. ^ Duran D, Zeng X, Jin SC, Choi J, Nelson-Williams C, Yatsula B, Gaillard J, Furey CG, Lu Q, Timberlake AT, Dong W, Sorscher MA, Loring E, Klein J, Allocco A, Hunt A, Conine S, Karimy JK, Youngblood MW, Zhang J, DiLuna ML, Matouk CC, Mane S, Tikhonova IR, Castaldi C, López-Giráldez F, Knight J, Haider S, Soban M, Alper SL, Komiyama M, Ducruet AF, Zabramski JM, Dardik A, Walcott BP, Stapleton CJ, Aagaard-Kienitz B, Rodesch G, Jackson E, Smith ER, Orbach DB, Berenstein A, Bilguvar K, Vikkula M, Gunel M, Lifton RP, Kahle KT (2018) Mutations in chromatin modifier and ephrin signaling genes in vein of Galen malformation. Neuron
  9. ^ "Vein of Galen Abnormalities". Duke University. Retrieved December 6, 2009. [dead link]
  10. ^
    S2CID 40452720
    .
  11. .
  12. ^ .
  13. ^ .
  14. ^ .
  15. ^ Chatterjee, S. (May 22, 2009). "Antiepileptic drugs" (PDF). Molecules of the Millennium. Indian Journal of Pharmacology. Archived from the original (PDF) on January 31, 2016. Retrieved December 6, 2009. [sic]
  16. S2CID 11112270
    .

External links