Эта статья входит в число избранных

Иммунная система

Материал из Википедии — свободной энциклопедии
сканирующего электронного микроскопа

Имму́нная систе́ма — система биологических структур и процессов организма, обеспечивающая его защиту от

эволюции появилась у челюстноротых позвоночных животных[1]. Один из важнейших механизмов адаптивной иммунной системы — иммунологическая память, благодаря которой организм развивает более сильный иммунный ответ на патоген после первой встречи с ним. Основу вакцинации
составляет именно иммунологическая память.

Нарушения в работе иммунной системы приводят к возникновению

рака[2]. Когда иммунная система функционирует слабо, наблюдаются иммунодефицитные состояния, из-за которых организм становится более уязвим для инфекций. Иммунодефицит может быть как врождённым, обусловленным генетическими отклонениями, так и приобретённым, например, в результате ВИЧ-инфекции или приёма препаратов-иммуносупрессоров
.

Функционирование иммунной системы изучает наука иммунология.

Органы иммунной системы

Органы иммунной системы

Иммунную систему образуют органы и анатомические структуры, содержащие лимфоидную ткань и участвующие в образовании клеток, которые осуществляют защитную реакцию организма, создавая

.

Уровни защиты

Иммунная система обеспечивает защиту организма от инфекций на нескольких уровнях с повышающейся специфичностью. Организм имеет физические барьеры, мешающие проникновению в него вирусов и бактерий. Если патогену удаётся их преодолеть, то он сталкивается со врождённой иммунной системой, которая обеспечивает быстрый, но неспецифический ответ. Врождённая иммунная система имеется у растений и животных[9]. У позвоночных, если патоген преодолевает врождённый иммунный ответ, он сталкивается со следующим рубежом защиты — адаптивной иммунной системой. Адаптивная иммунная система обеспечивает специфический иммунный ответ, направленный против конкретного патогена. После того, как патоген был уничтожен, адаптивная иммунная система «запоминает» его с помощью иммунологической памяти, благодаря которой при повторной встрече с патогеном организм сможет быстро развить специфический иммунный ответ против него[10][11]. В таблице ниже перечислены основные компоненты врождённой и адаптивной иммунной систем.

Компоненты иммунной системы
Врождённая иммунная система Адаптивная иммунная система
Ответ неспецифичен Специфический ответ
Обеспечивает немедленный иммунный ответ умеренной силы Обеспечивает отложенный сильный иммунный ответ
Имеет клеточную и гуморальную составляющую Имеет клеточную и гуморальную составляющую
Нет иммунологической памяти После первого столкновения с патогеном появляется иммунологическая память
Есть практически у всех форм жизни Есть только у челюстноротых позвоночных животных

И врождённая, и адаптивная иммунная системы полагаются на способность организма отличать своё от не-своего. В иммунологии под «своим» понимают

иммунных клетках и запускать иммунный ответ; такие молекулы называют антигенами[12]
.

Грудное молоко или молозиво также содержат антитела, которые также обеспечивают защиту новорождённого, пока его собственная иммунная система не начнёт вырабатывать свои антитела[14]. Поскольку организм новорождённого сам не вырабатывает антител и не формирует клетки памяти, его иммунитет является пассивным. Пассивная защита новорождённого, как правило, недолговечна и функционирует от нескольких дней до нескольких недель. Пассивный иммунитет можно создать и искусственно путём введения в организм сыворотки, богатой антителами[15]
.

Поверхностные барьеры

Организм защищён от проникновения патогенов несколькими поверхностными барьерами: механическими, химическими и биологическими.

клетками дыхательных путей и желудочно-кишечного тракта, склеивает и обездвиживает клетки патогенов[18]
.

К числу химических барьеров относят антимикробные

желудке мощную защиту от поглощённых с пищей патогенов обеспечивает соляная кислота, секретируемая некоторыми клетками стенки желудка[24]
.

В

Candida, вызывающие кандидоз[26]. Поэтому после приёма антибиотиков с целью восстановления нормальной микрофлоры назначают препараты групп пребиотиков и пробиотиков. Здоровая микрофлора обеспечивает мощную защиту от бактериального гастроэнтерита, воспалительных заболеваний кишечника, инфекций мочеполовой системы и бактериальных осложнений после хирургических вмешательств[27][28][29]
.

Врождённая иммунная система

Микроорганизмы и токсины, успешно преодолевшие физические защитные барьеры организма, сталкиваются с противодействием врождённой иммунной системы. Врождённый иммунный ответ, как правило, запускается после распознавания патогенов рецепторами опознавания патогенов, узнающими молекулы, имеющиеся у большинства представителей больших групп патогенов (как липополисахарид у грамотрицательных бактерий)[30]. Врождённый иммунный ответ также запускается при распознавании рецепторами сигналов, исходящих от повреждённых клеток организма или клеток, находящихся в состоянии стресса[англ.]. Врождённая иммунная система неспецифична и обеспечивает ответ на широкий спектр патогенов независимо от их специфических свойств[16][31]. Врождённый иммунитет не обеспечивает долговременную защиту от патогена, тем не менее, эта форма иммунитета доминирует у большинства организмов[9].

Распознавание паттернов

Принцип распознавания паттернов PAMP в иммунной системе на примере липополисахарида

Клетки врождённой иммунной системы распознают молекулы и молекулярные комплексы, продуцируемые микробными клетками, с помощью

нейтрофилами, а также эпителиальными клетками. PRPs распознают молекулярные паттерны двух классов: молекулярные паттерны, ассоциированные с патогенами[англ.] (англ. pathogen-associated molecular patterns, PAMPs), и молекулярные паттерны, ассоциированные с повреждениями (англ. damage-associated molecular patterns, DAMPs). PAMPs узнают клетки патогенов, а DAMPs узнают клетки самого организма, подвергшиеся стрессу или повреждениям[33]
.

Распознавание внеклеточных или заключённых в

цитокинов, которые активируют защитные программы врождённого или адаптивного иммунитета. У человека описано 10 функциональных TLR[36]
.

Клетки врождённой иммунной системы имеют рецепторы, которые распознают опасные молекулярные паттерны, свидетельствующие об инфекции или повреждении клетки, в

ДНК[37]. В ответ на цитозольные PAMPs и DAMPs собираются инфламмасомы — мультибелковые комплексы, эффекторным компонентом которых является каспаза 1. Инфламмасомы обеспечивают продукцию активных форм воспалительных цитокинов IL-1β и IL-18[38]
.

Клеточные компоненты

Основные типы клеток врождённого иммунитета

Важнейшую роль в функционировании врождённого иммунитета играют лейкоциты

натуральные киллеры. Эти клетки распознают клетки патогенов и убивают их[39]. Клетки врождённого иммунитета играют важную роль в развитии лимфоидных органов и активации адаптивного иммунитета[40]
.

Многие клетки врождённого иммунитета обладают способностью к фагоцитозу, то есть поглощению, патогенных агентов. Фагоциты «патрулируют» организм в поисках патогенных клеток или же направленно мигрируют к очагу инфекции по направлению, указываемому

ферментов или свободных радикалов, образующихся в результате окислительного взрыва[англ.][41][42]. Фагоцитоз, возможно, является древнейшим защитным механизмом, поскольку фагоциты имеются и у хордовых, и у беспозвоночных животных[43]
.

Крупнейшие группы фагоцитов — нейтрофилы и макрофаги[44]. Нейтрофилы в норме циркулируют по кровотоку и являются самой многочисленной группой фагоцитов, составляя от 50 % до 60 % всех лейкоцитов в крови[45]. В ходе острой фазы воспаления нейтрофилы мигрируют к очагу воспаления посредством хемотаксиса и, как правило, первыми из иммунных клеток прибывают в очаг инфекции. Макрофаги, в отличие от нейтрофилов, находятся в тканях и не циркулируют по кровеносным сосудам. Макрофаги секретируют разнообразные вещества, такие как ферменты, белки системы комплемента и цитокины, поглощают остатки погибших клеток организма, а также выступают в роли антигенпрезентирующих клеток, активирующих адаптивный иммунный ответ[46].

В тканях, контактирующих со внешней средой, находятся фагоциты, относящиеся к числу дендритных клеток. Дендритные клетки обнаруживаются в коже, эпителии

ноздрей, лёгких, желудка и кишечника. Своё название дендритные клетки получили из-за характерных отростков, напоминающих дендриты нейронов, однако никакого отношения к нервной системе они не имеют. Дендритные клетки служат связующим звеном между тканями тела и иммунной системы благодаря способности к презентации антигенов T-лимфоцитам (T-клеткам)[47]
.

Лейкоциты, в цитоплазме которых содержатся гранулы, получили общее название гранулоциты. К гранулоцитам относятся нейтрофилы, базофилы и эозинофилы. В

паразитами, а также задействованы в аллергических реакциях[49]
.

Врождённые лимфоидные клетки являются производными общей клетки-предшественницы иммунных клеток. Они не имеют

T- и B-клеточных рецепторов[50]. К числу врождённых лимфоидных клеток относятся натуральные киллеры (NK-клетки), которые не уничтожают инфекционные агенты непосредственно, а убивают клетки организма, инфицированные вирусом или внутриклеточной бактерией, и злокачественные клетки[51]. Как правило, инфицированные клетки не имеют на поверхности молекул главного комплекса гистосовместимости (MHC) I класса (MHC-I[англ.])[39], и NK-клетки уничтожают их без какой-либо предварительной активации. Нормальные клетки организма экспрессируют MHC-I и не становятся жертвами NK-клеток[52]
.

Воспаление

Воспаление является одной из первых реакций иммунной системы на развивающуюся инфекцию

цитотоксических факторов и факторов роста. Все эти вещества привлекают иммунные клетки в очаг инфекции и способствуют заживлению повреждённой ткани после уничтожения патогенных клеток[57]
.

Система комплемента

Схема каскада системы комплемента

Система комплемента представляет собой биохимический каскад, направленный на нарушение целостности чужеродных клеток. В состав системы комплемента входит более 20 белков, которые дополняют («комплементируют») действие антител по уничтожению патогенов[58][59]. Система комплемента — важнейший гуморальный компонент врождённого иммунитета. Система комплемента есть не только у позвоночных, но и у беспозвоночных животных и даже растений[39].

У человека компоненты системы комплемента связываются либо с антителами, уже прикрепившимися к микробным клеткам, либо с

протеаз, входящих в состав системы комплемента, посредством протеолиза[60]. Активированные протеазы далее за счёт протеолиза активируют новые протеазы, и так далее, то есть система комплемента активируется по механизму положительной обратной связи[61]. В конечном счёте активация системы комплемента приводит к продукции пептидов, которые привлекают к патогену другие иммунные клетки, увеличивают проницаемость стенок кровеносных сосудов и опсонизируют (покрывают) патогенную клетку, помечая её для дальнейшего разрушения. Белки системы комплемента также могут непосредственно убивать микробные клетки, встраиваясь в их мембраны и нарушая их целостность[58]
.

Адаптивная иммунная система

В ходе эволюции адаптивная иммунная система появилась у челюстноротых животных. Адаптивный иммунитет обеспечивает сильный специфический ответ, а также формирование иммунологической памяти. Адаптивный иммунный ответ специфичен по отношению к определённому антигену, распознавание которого клетками адаптивного иммунитета происходит в ходе процесса презентации антигена. После уничтожения патогена сохраняются клетки адаптивного иммунитета, которые хранят сведения о его антигенах и обеспечивают иммунологическую память. Благодаря ей при вторичном проникновении патогена на него развивается быстрый специфический иммунный ответ[62].

Распознавание антигена

Схема распознавания антигенов в комплексе с MHC T-клеточными рецепторами (вместе с корецепторами)

Клетки адаптивного иммунитета представлены специфической группой лейкоцитов — лимфоцитами, которые подразделяют на T-лимфоциты (T-клетки) и B-лимфоциты (B-клетки). Лимфоциты образуются от гемоцитобластов в костном мозге, и далее T-клетки созревают в тимусе, а B-клетки созревают в костном мозге. T-клетки обеспечивают клеточный адаптивный иммунный ответ, а B-клетки — гуморальный адаптивный иммунный ответ. T- и B-клетки несут на своей поверхности рецепторы (T- и B-клеточные рецепторы соответственно), распознающие антигены. Как правило, T-клетки не способны распознавать антигены в исходной форме; они распознают только

T-хелперы и регуляторные T-клетки распознают фрагменты антигенов в комплексе с MHC-II[англ.]. Особая группа T-клеток, γδ-T-клетки[англ.], могут распознавать интактные антигены, не связанные с MHC[63]. B-клеточный рецептор представляет собой молекулу антитела, заякоренную на поверхности B-клетки, и распознаёт антиген без дополнительного процессинга. B-клеточные рецепторы разных линий B-клеток соответствуют разным антигенам и отображают весь репертуар антител, которые могут быть образованы[64]
.

Клеточный адаптивный иммунный ответ

Схема T-клеточного ответа

Среди T-клеток выделяют три основные популяции: T-киллеры, T-хелперы и регуляторные T-клетки. T-киллеры уничтожают инфицированные и повреждённые клетки

мембрану клетки-мишени с образованием пор и нарушают её целостность. Проникновение в клетку-мишень другого белка, протеазы гранулизина[англ.], запускает апоптоз клетки-мишени[66]. T-киллеры играют особо важную роль в предотвращении репликации вирусов за счёт уничтожения инфицированных клеток. Активация T-киллеров жёстко регулируется и происходит только в случае почти идеального соответствия T-клеточного рецептора и антигена, кроме того, для активации T-киллеров необходимы дополнительные сигналы, которые посылаются T-клетками другого типа — T-хелперами[66]
.

T-хелперы регулируют адаптивный и приобретённый иммунные ответы. T-хелперы лишены цитотоксической активности, они не уничтожают ни клетки патогена, ни заражённые клетки

бактерицидные свойства макрофагов и активность T-киллеров[16]
.

Регуляторные T-клетки, ранее известные как супрессорные T-клетки, подавляют функционирование и пролиферацию эффекторных T-клеток, предотвращая развитие аутоиммунных заболеваний[70], и по происхождению родственны T-хелперам. Как и T-хелперы, регуляторные T-клетки экспрессируют корецептор CD4[71]. γδ-T клетки экспрессируют альтернативную форму TCR, отличающуюся от таковой у CD4+ и CD8+ T-клеток, и совмещают свойства T-хелперов, T-киллеров и NK-клеток[72].

Гуморальный адаптивный иммунный ответ

Схема взаимодействия антигена и антитела

B-клетки распознают антигены посредством B-клеточных рецепторов, которые представляют собой антитела, заякоренные на поверхности B-клеток

лимфокины, активирующие B-клетку[74]. Активированная B-клетка начинает делиться, и её клетки-потомки, называемые плазматическими клетками, секретируют миллионы молекул антител, которые идентичны B-клеточному рецептору, первоначально связавшему антиген. Антитела циркулируют в крови и лимфе, связываются с клетками патогена, экспрессирующими соответствующий им антиген, и маркируют их для разрушения белками комплемента или фагоцитами. Антитела могут сами по себе обладать защитными свойствами, связываясь с бактериальными токсинами и нейтрализуя их или конкурируя с вирусами и бактериями за рецепторы, мешая им инфицировать клетку[75]
.

Физиологическая регуляция

Схема взаимодействия иммунной, нервной и эндокринной систем

Иммунная система тесно взаимодействует с другими системами органов, в частности, эндокринной[76][77] и нервной[78][79][80]. Иммунная система также играет важную роль в восстановлении целостности тканей и регенерации.

Гормоны

соматотропин и производные витамина D[87][88]
.

Гормоны из группы глюкокортикоидов являются важнейшими регуляторами иммунной системы, так как повышают экспрессию противовоспалительных белков (таких как липокортин I[англ.], p11[англ.], SLPI и MAPK-фосфатазы[89]) и понижают выработку провоспалительных белков. Благодаря выраженному противовоспалительному действию глюкокортикоиды используются в терапии аутоиммунных заболеваний, аллергии, сепсиса[90]. Глюкокортикоиды также задействованы в регуляции развития T-клеток[91].

Когда T-клетка встречается с патогеном, она выставляет наружу рецептор витамина D[англ.]. Благодаря ему T-клетка взаимодействует с активной формой витамина D — стероидным гормоном кальцитриолом. Но этим связь T-клеток с витамином D не ограничивается. T-клетки экспрессируют ген CYP27B1[англ.], кодируемый которым фермент превращает производное витамина D кальцидиол в кальцитриол. T-клетки могут выполнять свои защитные функции только после связывания с кальцитриолом. Ген CYP27B1 экспрессируется и некоторыми другими клетками, которые также способны образовывать кальцитриол из кальцидиола: дендритными клетками, макрофагами, а также кератиноцитами[92][93].

Предполагается, что прогрессирующее снижение уровня гормонов с возрастом может быть связано с ослабленным иммунитетом у пожилых людей[94]. Кроме того, иммунная система также влияет на эндокринную, в частности, на тиреоидные гормоны[95]. Возрастное снижение иммунитета коррелирует с понижающимся уровнем витамина D у людей преклонного возраста[96].

Сон и отдых

медленного сна[99]. Благодаря этому во время инфекции цикл сна может меняться, а именно, увеличиваться доля медленноволнового сна[100]
.

У людей, страдающих от недостатка сна, может наблюдаться сниженный по сравнению с обычными людьми иммунный ответ и пониженное образование антител в ответ на инфекцию. Кроме того, нарушения циклов чередования светлого и тёмного времени суток нарушают работу белка

циркадных ритмов, но и дифференцировки T-клеток. Нарушение суточных ритмов вместе с нарушениями в работе иммунной системы могут вызывать болезни сердца, астму и хронические боли[англ.][101]
.

Помимо отрицательного эффекта нехватки сна на работу иммунной системы, сон и циркадные ритмы оказывают сильное регулирующее воздействие и на врождённый, и на приобретённый иммунитет. Во время медленноволнового сна происходит резкий провал в уровне кортизола, адреналина и норадреналина, из-за чего возрастает концентрация лептина, соматотропина и пролактина. Эти гормоны связаны с образованием провоспалительных цитокинов IL-1, IL-12[англ.], TNFα и INFγ, которые активируют иммунные клетки, способствуют их пролиферации и дифференцировке. Именно во время медленноволнового сна по ходу медленно развивающегося адаптивного иммунного ответа достигает пика численность недифференцированных или слабо дифференцированных наивных T-клеток[англ.] и T-клеток памяти. Кроме того, гормоны, активно продуцирующиеся во время медленного сна (лептин, соматотропин и пролактин), поддерживают взаимодействие антигенпрезентирующих клеток и T-клеток, увеличивают пролиферацию T-хелперов и миграцию наивных T-клеток в лимфоузлы. Считается, что эти же гормоны способствуют формированию долговременной иммунологической памяти, активируя ответ T-хелперов[102].

Во время бодрствования, напротив, пика достигает численность T-киллеров и NK-клеток, а также концентрация противовоспалительных веществ, таких как кортизол и катехоламины. Существуют две гипотезы относительно того, почему во время сна активируются провоспалительные сигналы в иммунной системе. Во-первых, если бы активный воспалительный ответ происходил во время бодрствования, он бы вызывал серьёзные физические и когнитивные нарушения. Во-вторых, протеканию воспаления во сне может способствовать мелатонин. Во время воспаления образуется огромное количество свободных радикалов (окислительный стресс), и мелатонин может противостоять их образованию во время сна[102][103].

Питание

Переедание связано с такими заболеваниями, как

питательных веществ, могут отрицательно сказываться на работе иммунитета[104]. Имеются данные, что на иммунитет положительно влияют продукты, богатые жирными кислотами[105], а недостаточное снабжение питательными веществами плода во время беременности может нарушить работу иммунной системы на всю оставшуюся жизнь[106]
.

Заживление ран и регенерация

Иммунная система, в особенности её врождённая составляющая, играет важнейшую роль в восстановлении тканей после повреждения

амфибий. Согласно одной из гипотез, виды, имеющие высокую способность к регенерации, менее иммунокомпетенты, чем виды, имеющие низкий регенеративный потенциал[112][113]
.

Нарушения иммунной системы у человека

Нарушения в работе иммунной системы можно подразделить на три категории: иммунодефициты, аутоиммунные заболевания и реакции гиперчувствительности[114].

Иммунодефицит

Иммунодефицит возникает при недостаточной эффективности работы иммунной системы, когда один или более её компонентов не функционируют. Активность иммунной системы после 50 лет постепенно снижается, этот процесс называют

онкологических заболеваний[117][118]
.

Аутоиммунные заболевания

Аутоиммунные заболевания связаны с повышенной гиперактивностью иммунной системы, которая начинает атаковать белки самого организма. Таким образом, при аутоиммунных заболеваниях нарушается механизм распознавания своего и чужого. В норме T-клетки, способные распознавать собственные белки организма, уничтожаются с помощью специальных механизмов

инсулинозависимый сахарный диабет, аутоиммунный тиреоидит[120]
.

Гиперчувствительность

Под гиперчувствительностью понимают чрезмерный иммунный ответ на какой-либо антиген. Реакции гиперчувствительности подразделяют на несколько типов в зависимости от их длительности и механизмов, лежащих в их основе. Гиперчувствительность I типа включает немедленные анафилактические реакции, часто связанные с аллергией. Реакции этого типа могут как вызывать небольшой дискомфорт, так и приводить к смерти. Основу гиперчувствительности I типа составляют иммуноглобулины E (IgE), которые вызывают дегрануляцию базофилов и тучных клеток. О гиперчувствительности II типа говорят, когда в организме присутствуют антитела, распознающие его собственные белки и помечающие экспрессирующие их клетки к разрушению. Гиперчувствительность II типа также называют зависимой от антител или цитотоксической гиперчувствительностью, её основу составляют иммуноглобулины G (IgG) и M (IgM). Иммунные комплексы, представляющие собой скопления антигенов, белков комплемента, IgG и IgM, запускают реакции гиперчувствительности III типа. Гиперчувствительность IV типа, также известная как отложенная гиперчувствительность, развивается в течение 2—3 дней. Реакции гиперчувствительности IV типа наблюдаются при многих аутоиммунных и инфекционных заболеваниях, а их основу составляют T-клетки, моноциты и макрофаги[121].

Медицинские манипуляции

Иммуносупрессия

Препараты-иммуносупрессоры (иммунодепрессанты) используются при лечении аутоиммунных заболеваний, избыточных воспалений, а также для предотвращения отторжения

пересадки органа[122][123]. Для контроля эффектов воспалительных процессов активно применяются противовоспалительные препараты. Одними из самых мощных противовоспалительных средств являются глюкокортикоиды, однако они обладают множеством серьёзных побочных эффектов, среди которых центральное ожирение, гипергликемия, остеопороз, поэтому их приём должен строго контролироваться[124]. Небольшие дозы противовоспалительных препаратов часто используются вместе с цитотоксическими препаратами и препаратами-иммуносупрессорами, такими как метотрексат и азатиоприн. Цитотоксические препараты подавляют иммунный ответ, убивая делящиеся клетки, среди которых и активированные T-клетки. Однако под удар попадают и делящиеся клетки других тканей, поэтому цитотоксические препараты имеют массу побочных эффектов[123]. Препараты-иммуносупрессоры, такие как циклоспорин, подавляют ответ T-клеток на внеклеточные стимулы, ингибируя их сигнальные пути[125]
.

Вакцинация

Активный иммунитет может быть создан искусственно за счёт вакцинации. Основной принцип вакцинации, или иммунизации, заключается во введении в организм антигена некоторого патогена с целью развить против него специфический иммунитет без перенесения болезни

бактериальных заболеваний основаны на неклеточных компонентах микроорганизмов, например, безвредных компонентах токсинов[16]. Так как многие антигены, использующиеся в неклеточных вакцинах, не обеспечивают адаптивный иммунный ответ достаточной силы, к большинству антибактериальных вакцин добавляют адъюванты, которые активируют антигенпрезентирующие клетки врождённого иммунитета и увеличивают иммуногенность вакцины[127]
.

Предсказание иммуногенности

Организм может развивать нейтрализующий иммунный ответ после введения препаратов, представляющих собой крупные пептиды и белки массой более 500

мутаций белков вирусной оболочки на его вирулентность. Самые первые методы оценки иммуногенности были основаны на наблюдении, что в эпитопах доля гидрофильных аминокислотных остатков гораздо больше, чем гидрофобных[128]. Последние подходы основаны на использовании машинного обучения и баз данных известных эпитопов (как правило, хорошо изученных вирусных белков) в качестве обучающей выборки[англ.][129]. Область, занимающаяся изучением иммуногенности с помощью биоинформатических подходов, получила название иммуноинформатики[англ.][130]
.

Иммунологическая толерантность

Под иммунологической толерантностью понимают отсутствие иммунного ответа на специфический антиген. Перечень антигенов, к которым может развиваться толерантность, практически неотличим от набора антигенов, против которых развивается специфический иммунный ответ. Специфическая неотвечаемость на определённые антигены необходима на некоторых стадиях онтогенеза, а также для нормального протекания беременности у млекопитающих (иммунологическая толерантность при беременности). Развитие толерантности к некоторым антигенам происходит на ранних этапах развития организма. Кроме того, толерантность можно искусственно индуцировать на ранних этапах онтогенеза, в частности, за счёт введения антигена в новорождённый организм с не до конца сформированной иммунной системой. Клеточные и молекулярные механизмы толерантности, сформированной в начале развития организма и во взрослом возрасте, нередко отличаются. Так, у новорождённых мышей макрофаги малочисленны, поэтому иммунная система не может развить эффективный ответ. В развитии иммунологической толерантности важную роль играют регуляторные T-клетки, подавляющие T-хелперы[131].

Иммунология опухолей

Помимо борьбы с патогенами, важная роль иммунной системы заключается в выявлении и уничтожении злокачественных клеток. Клетки опухолей, претерпевшие злокачественную трансформацию, часто экспрессируют поверхностные антигены, отсутствующие у нормальных клеток. Иммунная система воспринимает эти антигены как чужеродные, поэтому они запускают иммунный ответ против злокачественных клеток. Опухолевые антигены могут иметь разное происхождение

меланоцитов в злокачественные клетки[135][136]. Третий источник опухолевых антигенов — это белки, в норме регулирующие рост и выживаемость клеток, которые часто мутируют и становятся онкогенами[132][137][138]
.

Противоопухолевый иммунный ответ заключается преимущественно в уничтожении опухолевых клеток T-киллерами, иногда при участии T-хелперов[136][139]. Опухолевые антигены презентируются в комплексе с MHC-I подобно вирусным белкам, благодаря чему T-киллеры могут распознать злокачественные клетки[140]. NK-клетки тоже уничтожают опухолевые клетки, особенно если они экспрессируют MHC-I на низком уровне по сравнению с нормой, что происходит с опухолевыми клетками довольно часто[141]. В некоторых случаях в организме образуются антитела к опухолевым антигенам, и злокачественные клетки уничтожаются системой комплемента[137].

Некоторым опухолям удаётся избежать иммунного ответа

TGFβ, подавляющий активность макрофагов и лимфоцитов[142][144]. Кроме того, к опухолевым антигенам может развиться иммунологическая толерантность, из-за чего иммунная система утрачивает способность распознавать злокачественные клетки[142][143]
.

Макрофаги могут способствовать росту опухоли из-за цитокинов, которые они используют для привлечения других макрофагов, например, TNFα

.

Эволюция

Многокомпонентная адаптивная иммунная система в ходе эволюции появилась, вероятнее всего, у челюстноротых позвоночных, поскольку у беспозвоночных нет ни лимфоцитов, ни антител

нуклеиновыми кислотами и их последующего разрушения белками Cas[147][148]. У прокариот есть и другие механизмы противовирусной защиты[149][150]. Некоторые элементы иммунной системы есть и у одноклеточных эукариот, однако они плохо изучены[151]
.

Некоторые компоненты врождённого иммунитета, такие как рецепторы распознавания паттернов, есть практически у всех организмов. Антимикробные пептиды есть у растений и животных, причём у беспозвоночных именно антимикробные пептиды являются главной формой системного иммунитета[1]. У большинства беспозвоночных животных также есть система комплемента и фагоциты. Главную роль в противовирусной защите от вирусов играют ферменты рибонуклеазы и механизм РНК-интерференции, которые консервативны практически у всех эукариот[152].

В отличие от животных, растения не имеют клеток, способных к фагоцитозу, однако растения всё же имеют иммунную систему, работа которой построена на передаче химических сигналов по всему растительному организму[153]. Отдельные клетки растений также могут реагировать на PAMPs[154]. При заражении участка растительной ткани формируется локальная реакция гиперчувствительности, из-за которой клетки, располагающиеся в зоне поражения, претерпевают апоптоз и становятся неспособны передавать патогены другим клеткам. Организм растения может приобрести резистентность к патогену целиком благодаря защитной реакции, известной как системная приобретённая резистентность[англ.][153]. Важную роль в системном ответе растений на вирусную инфекцию играет РНК-интерференция, блокирующая репликацию вирусов[155].

Хотя классические молекулы адаптивной иммунной системы, такие как

миксины. У них имеются так называемые вариабельные рецепторы лимфоцитов[англ.] (англ. variable lymphocyte receptors, VLRs), которые кодируются одним или двумя генами. VLRs связывают антигены похожим на антитела образом и со схожей специфичностью[156]
.

Противодействие патогенов

Успех любого патогена зависит от того, насколько успешно он может преодолевать барьеры иммунной системы организма. Поэтому патогены развили несколько механизмов, которые помогают им уклоняться от действия иммунной системы или приводят к её разрушению[157]. Бактерии часто преодолевают защитные барьеры организма, выделяя ферменты, которые их разрушают, например, с помощью систем секреции II типа[158]. Системы секреции III типа обеспечивают связь клетки бактерии с клеткой организма-хозяина посредством полых трубок, благодаря чему белки патогена непосредственно доставляются в клетки организма-хозяина. Часто эти белки предназначены для выключения защитных механизмов хозяина[159].

Некоторые патогены, например, внутриклеточные, избегают иммунного ответа, «прячась» внутри клеток хозяина. Такие патогены большую часть своего жизненного цикла проводят внутри клеток хозяина, где они защищены от действия иммунных клеток, антител и системы комплемента. К числу внутриклеточных патогенов относятся вирусы, некоторые бактерии (например,

Staphylococcus aureus и белок L Peptostreptococcus magnus[162]
.

Механизмы избегания адаптивного иммунного ответа устроены более сложно. Простейшим из них является

липидной оболочкой, происходящей из мембраны клетки-хозяина, благодаря чему иммунной системе оказывается сложнее опознать их как чужеродные объекты[165]
.

История изучения

Пауль Эрлих — автор теории гуморального иммунитета

Первые известные записи о существовании иммунитета датируются 430 годом

оспы против повторного заболевания[167]. Хотя в его представлении иммунитет заключался в выделении «излишков влаги» с кровью во время первого заболевания, благодаря чему предотвращается повторное заболевание, теория ар-Рази смогла объяснить некоторые наблюдения насчёт оспы, имевшиеся на тот момент[168]
.

В XVIII веке

Нобелевскую премию по физиологии и медицине за установление микробной причины инфекционных болезней[171]. Роль вирусов в заболеваниях человека была показана в 1901 году, когда Уолтер Рид открыл вирус жёлтой лихорадки[172]
.

Иммунология бурно развивалась в конце XIX века. В то время интенсивно изучались клеточные и гуморальные основы иммунитета

Эмиль Адольф фон Беринг, утверждали, что компоненты иммунитета являются свободными молекулами, растворёнными в жидкостях организма, а не специализированные клетки. За свои работы в изучении механизмов гуморального иммунитета Эрлих был удостоен Нобелевской премии по физиологии и медицине в 1908 году, которую он разделил с Мечниковым[174]
.

В 1950-х годах

Фрэнк Макфарлейн Бёрнет сформулировал теорию клональной селекции в иммунной системе[175]. Согласно Бёрнету, запуск иммунного ответа основан на различении «своего» (компонентов здорового организма, не запускающих иммунный ответ) и «чужого» (патогенов и трансплантатов, которые активируют иммунный ответ)[176]. Теория Бёрнета была в дальнейшем преобразована в соответствии с новыми открытиями, касающимися главного комплекса гистосовместимости и его участия в двухшаговой активации T-клеток[177]
.

Примечания

  1. ]
  2. ]
  3. Галактионов, 2004, с. 164.
  4. ]
  5. ]
  6. ]
  7. ]
  8. Бурместер, Пецутто, 2014, с. 14.
  9. ]
  10. ]
  11. ]
  12. Smith A. D. (Ed). Oxford dictionary of biochemistry and molecular biology (англ.). — Oxford University Press, 2000. — P. 592. — ISBN 0-19-854768-4.
  13. ]
  14. ]
  15. ]
  16. 1 2 3 4 5 6 7 8 Alberts, Bruce; Johnson, Alexander; Lewis, Julian; Raff, Martin; Roberts, Keith; Walters, Peter. Molecular Biology of the Cell. — Fourth. — New York and London: Garland Science[англ.], 2002. — ISBN 978-0-8153-3218-3. Архивировано 18 сентября 2009 года.
  17. Галактионов, 2004, с. 327—328.
  18. ]
  19. ]
  20. Moreau J. M., Girgis D. O., Hume E. B., Dajcs J. J., Austin M. S., O'Callaghan R. J. Phospholipase A(2) in rabbit tears: a host defense against Staphylococcus aureus. (англ.) // Investigative Ophthalmology & Visual Science. — 2001. — September (vol. 42, no. 10). — P. 2347—2354. — PMID 11527949. [исправить]
  21. ]
  22. ]
  23. ]
  24. ]
  25. Gorbach S. L. Lactic acid bacteria and human health. (англ.) // Annals Of Medicine. — 1990. — February (vol. 22, no. 1). — P. 37—41. — PMID 2109988. [исправить]
  26. Hill L. V., Embil J. A. Vaginitis: current microbiologic and clinical concepts. (англ.) // CMAJ : Canadian Medical Association Journal = Journal De L'Association Medicale Canadienne. — 1986. — 15 February (vol. 134, no. 4). — P. 321—331. — PMID 3510698. [исправить]
  27. ]
  28. ]
  29. ]
  30. ]
  31. ]
  32. ]
  33. ]
  34. ]
  35. ]
  36. ]
  37. ]
  38. ]
  39. 1 2 3 Murphy, Weaver, 2017, p. 37—77.
  40. ]
  41. ]
  42. ]
  43. ]
  44. Zen K., Parkos C. A. Leukocyte-epithelial interactions. (англ.) // Current opinion in cell biology. — 2003. — Vol. 15, no. 5. — P. 557—564. — PMID 14519390. [исправить]
  45. 1 2 Stvrtinová, Viera; Jakubovský, Ján; Hulín, Ivan. Inflammation and Fever from Pathophysiology: Principles of Disease (англ.). — Computing Centre, Slovak Academy of Sciences: Academic Electronic Press, 1995. — ISBN 80-967366-1-2. Архивировано 11 июля 2001 года.
  46. ]
  47. ]
  48. ]
  49. ]
  50. ]
  51. ]
  52. ]
  53. ]
  54. ]
  55. ]
  56. Le Y., Zhou Y., Iribarren P., Wang J. Chemokines and chemokine receptors: their manifold roles in homeostasis and disease. (англ.) // Cellular & Molecular Immunology. — 2004. — April (vol. 1, no. 2). — P. 95—104. — PMID 16212895. [исправить]
  57. ]
  58. ]
  59. ]
  60. ]
  61. ]
  62. ]
  63. ]
  64. Murphy, Weaver, 2017, p. 139—173.
  65. ]
  66. ]
  67. ]
  68. ]
  69. ]
  70. ]
  71. ]
  72. ]
  73. ]
  74. ]
  75. Murphy, Weaver, 2017, p. 399—445.
  76. ]
  77. ]
  78. ]
  79. ]
  80. ]
  81. Wira, CR; Crane-Godreau M; Grant K. Endocrine regulation of the mucosal immune system in the female reproductive tract // Mucosal Immunology / Ogra P. L., Mestecky J., Lamm M. E., Strober W., McGhee J. R., Bienenstock J.. — San Francisco: Elsevier, 2004. — ISBN 0-12-491543-4.
  82. ]
  83. ]
  84. ]
  85. ]
  86. ]
  87. ]
  88. ]
  89. ]
  90. ]
  91. ]
  92. ]
  93. ]
  94. ]
  95. ]
  96. ]
  97. ]
  98. ]
  99. ]
  100. ]
  101. Sleep's Effects On Your Immune System Revealed In New Body Clock Study (8 ноября 2013). Дата обращения: 30 марта 2020. Архивировано 17 ноября 2013 года.
  102. ]
  103. Can Better Sleep Mean Catching fewer Colds? Дата обращения: 28 апреля 2014. Архивировано из оригинала 9 мая 2014 года.
  104. R. M. Suskind, C. L. Lachney, J. N. Udall, Jr. Malnutrition and the Immune Response, in: Dairy products in human health and nutrition, M. Serrano-Ríos, ed. — CRC Press, 1994. — P. 285–300.
  105. ]
  106. ]
  107. ]
  108. ]
  109. ]
  110. ]
  111. ]
  112. ]
  113. ]
  114. Галактионов, 2004, с. 364, 375, 380.
  115. ]
  116. ]
  117. ]
  118. Copeland K. F., Heeney J. L. T helper cell activation and human retroviral pathogenesis. (англ.) // Microbiological Reviews. — 1996. — December (vol. 60, no. 4). — P. 722—742. — PMID 8987361. [исправить]
  119. ]
  120. Галактионов, 2004, с. 376—377.
  121. Ghaffar, Abdul Immunology – Chapter Seventeen: Hypersensitivity States. Microbiology and Immunology On-line. University of South Carolina School of Medicine (2006). Дата обращения: 29 мая 2016. Архивировано 18 мая 2016 года.
  122. 1 2 Murphy, Weaver, 2017, p. 701—748.
  123. ]
  124. ]
  125. ]
  126. Death and DALY estimates for 2002 by cause for WHO Member States. World Health Organization. Retrieved on 1 January 2007. Дата обращения: 30 марта 2020. Архивировано 2 мая 2008 года.
  127. ]
  128. ]
  129. ]
  130. Flower D. R., Doytchinova I. A. Immunoinformatics and the prediction of immunogenicity. (англ.) // Applied Bioinformatics. — 2002. — Vol. 1, no. 4. — P. 167—176. — PMID 15130835. [исправить]
  131. Галактионов, 2004, с. 316—321.
  132. ]
  133. ]
  134. ]
  135. ]
  136. ]
  137. ]
  138. ]
  139. ]
  140. ]
  141. ]
  142. ]
  143. ]
  144. ]
  145. ]
  146. Bickle T. A., Krüger D. H. Biology of DNA restriction. (англ.) // Microbiological Reviews. — 1993. — June (vol. 57, no. 2). — P. 434—450. — PMID 8336674. [исправить]
  147. ]
  148. ]
  149. ]
  150. ]
  151. ]
  152. ]
  153. 1 2 Schneider, David Innate Immunity – Lecture 4: Plant immune responses. Stanford University Department of Microbiology and Immunology. Дата обращения: 1 января 2007. Архивировано 6 января 2017 года.
  154. ]
  155. ]
  156. ]
  157. ]
  158. ]
  159. ]
  160. Finlay B. B., Falkow S. Common themes in microbial pathogenicity revisited. (англ.) // Microbiology And Molecular Biology Reviews : MMBR. — 1997. — June (vol. 61, no. 2). — P. 136—169. — PMID 9184008. [исправить]
  161. ]
  162. ]
  163. ]
  164. ]
  165. ]
  166. Retief F. P., Cilliers L. The epidemic of Athens, 430-426 BC. (англ.) // South African Medical Journal = Suid-Afrikaanse Tydskrif Vir Geneeskunde. — 1998. — January (vol. 88, no. 1). — P. 50—53. — PMID 9539938. [исправить]
  167. Silverstein, Arthur M.[англ.]. A History of Immunology. — Academic Press, 1989. — С. 6—7. — ISBN 978-0-08-092583-7.
  168. ]
  169. ]
  170. The Nobel Prize in Physiology or Medicine 1905. Nobelprize.org. Accessed 8 January 2009. Дата обращения: 30 марта 2020. Архивировано 10 декабря 2006 года.
  171. Major Walter Reed, Medical Corps, U.S. Army. Walter Reed Army Medical Center. Accessed 8 January 2007. Дата обращения: 30 марта 2020. Архивировано из оригинала 23 октября 2007 года.
  172. Metchnikoff, Elie[англ.]; Translated by F.G. Binnie. Immunity in Infective Diseases. — Cambridge University Press, 1905.. — «history of humoral immunity.».
  173. The Nobel Prize in Physiology or Medicine 1908. Nobelprize.org Accessed 8 January 2007. Дата обращения: 30 марта 2020. Архивировано 19 февраля 2007 года.
  174. Burnet F. M. The Clonal Selection Theory of Acquired Immunity (англ.). — Cambridge: Cambridge University Press, 1959.
  175. Burnet F. M. Cellular Immunology: Self and Notself. — Cambridge: Cambridge University Press, 1969.
  176. ]

Литература

Ссылки

  • Immune System Архивная копия от 2 мая 2019 на
    University of Hartford
     (англ.)
  • Microbiology and Immunology from the
    University of South Carolina
     (англ.)
  • Иммунная система : Какие агенты внутри нас защищают организм от угроз : гид / Научн. консульт. Николай Никитин (докт. мед. наук, проф. каф. вирусологии биофака МГУ). — Постнаука. — 2023.