Antimicrobial peptides

Source: Wikipedia, the free encyclopedia.
Various structures of antimicrobial peptides

Antimicrobial peptides (AMPs), also called host defence peptides (HDPs) are part of the

immunomodulators
.

Structure

Antimicrobial peptides from animals, plants and fungi organised by their secondary structure content. Circle size indicates overall molecular weight of each peptide.

Antimicrobial peptides are a unique and diverse group of molecules, which are divided into subgroups on the basis of their amino acid composition and structure.

disulfide bonds, iii) β-hairpin or loop due to the presence of a single disulfide bond and/or cyclization of the peptide chain, and iv) extended.[7] Many of these peptides are unstructured in free solution, and fold into their final configuration upon partitioning into biological membranes. The peptides contain hydrophilic amino acid residues aligned along one side and hydrophobic amino acid residues aligned along the opposite side of a helical molecule.[3] This amphipathicity of the antimicrobial peptides allows them to partition into the membrane lipid bilayer. The ability to associate with membranes is a definitive feature of antimicrobial peptides,[8][9] although membrane permeabilization is not necessary. These peptides have a variety of antimicrobial activities ranging from membrane permeabilization to action on a range of cytoplasmic targets.[citation needed
]

Type characteristic AMPs
Anionic peptides rich in glutamic and aspartic acids Maximin H5 from amphibians, dermcidin from humans
Linear cationic α-helical peptides lack in cysteine
LL37
from humans
Cationic peptide enriched for specific amino acid rich in proline, arginine, phenylalanine, glycine, tryptophan abaecin and drosocin, apidaecin, diptericin, and attacin from insects, prophenin from pigs, indolicidin from cattle.
Anionic/cationic peptides forming disulfide bonds contain 1~3 disulfide bond

Activities

The modes of action by Antimicrobial peptides

The modes of action by which antimicrobial peptides kill microbes are varied,

bacteriostatic. In general the antimicrobial activity of these peptides is determined by measuring the minimal inhibitory concentration (MIC), which is the lowest concentration of drug that inhibits bacterial growth.[16]

AMPs can possess multiple activities including anti-gram-positive bacterial, anti-gram-negative bacterial, anti-fungal, anti-viral, anti-parasitic, and anti cancer activities. A big AMP functional analysis indicates that among all AMP activities, amphipathicity and charge, two major properties of AMPs, best distinguish between AMPs with and without anti-gram-negative bacterial activities.[17] This implies that being AMPs with anti-gram-negative bacterial activities may prefer or even require strong amphipathicity and net positive charge.[citation needed]

Immunomodulation

In addition to killing bacteria directly they have been demonstrated to have a number of

immunomodulatory functions that may be involved in the clearance of infection, including the ability to alter host gene expression, act as chemokines and/or induce chemokine production, inhibiting lipopolysaccharide induced pro-inflammatory cytokine production, promoting wound healing, and modulating the responses of dendritic cells and cells of the adaptive immune response. Animal models indicate that host defense peptides are crucial for both prevention and clearance of infection. It appears as though many peptides initially isolated as and termed "antimicrobial peptides" have been shown to have more significant alternative functions in vivo (e.g. hepcidin[18]). Dusquetide for example is an immunomodulator that acts through p62, a protein involved in toll like receptor based signalling of infection. The peptide is being examined in a Phase III clinical trial by Soligenix (SGNX) to ascertain if it can assist in repair of radiation-induced damage to oral mucosa arising during cancer radiotherapy of the head and neck.[19]

Mechanisms of action

Scanning electron microscopic images (50,000X magnification) displaying the action of an experimental antimicrobial peptide (NN2_0050) on the cell membrane of E. coli (K12 MG1655) [1]
ABOVE: Intact cell membranes in the control group. BELOW: Disrupted cell membranes and leakage of bacterial chromosome (green) in the treated group.

Antimicrobial peptides generally have a net positive charge, allowing them to interact with the negatively charged molecules exposed on bacteria and cancer cell surfaces, such as phospholipid phosphatidylserine, O-glycosylated mucins, sialylated gangliosides, and heparin sulfates. The mechanism of action of these peptides varies widely but can be simplified into two categories: membranolytic and non-membranolytic antimicrobial peptides.[20] The disruption of membranes by membranolytic antimicrobial peptides can be described by four models:[20]

  • Barrel-stave model: The barrel-stave model proposes that AMPs interact with the lipid bilayer of the microbial cell membrane to form transmembrane channels or "barrel staves". These channels are thought to disrupt the membrane's integrity, leading to the death of the microbe.
  • Carpet model: The carpet model proposes that AMPs adsorb onto the lipid bilayer of the microbial cell membrane, forming a dense layer that causes the membrane to become permeabilized. This model suggests that the AMP acts as a "carpet" that covers the surface of the cell, preventing the microbe from functioning properly.
  • Toroidal model: The toroidal model proposes that AMPs interact with the lipid bilayer of the microbial cell membrane to form toroidal structures, which are thought to pinch off sections of the membrane and lead to the formation of vesicles. This process is thought to disrupt the membrane's integrity and cause the death of the microbe.
  • Disordered toroidal-pore model: According to this model, the disordered AMPs wrap around the lipid bilayer and create a pore, which disrupts the membrane's integrity and leads to the death of the microbe. Unlike the toroidal model, which suggests that the AMP creates a stable toroidal structure, the disordered toroidal-pore model suggests that the AMP is flexible and does not form a stable toroidal structure. The peptide-lipid pore complex becomes intrinsically disordered, with the orientation of the peptide not well defined.[21]
Schematic representation of the AMPs mechanisms of action when disrupting membranes.[22]

Several methods have been used to determine the mechanisms of antimicrobial peptide activity.

solid-state NMR studies have provided an atomic-level resolution explanation of membrane disruption by antimicrobial peptides.[23][24] In more recent years, X-ray crystallography has been used to delineate in atomic detail how the family of plant defensins rupture membranes by identifying key phospholipids in the cell membranes of the pathogen.[25][26] Human defensins have been thought to act through a similar mechanism, targeting cell membrane lipids as part of their function. In fact human beta-defensin 2 have now been shown to kill the pathogenic fungi Candida albicans through interactions with specific phospholipids.[27] From the computational point of view, Molecular Dynamics simulations can provide detailed information about the structure and dynamics of the peptide-membrane interactions, including the orientation, conformation, and insertion of the peptide in the membrane, as well as specific peptide interactions with lipids, ions and solvent.[28]

Methods Applications
Microscopy to visualize the effects of antimicrobial peptides on microbial cells
Atomic emission spectroscopy to detect loss of intracellular potassium (an indication that bacterial membrane integrity has been compromised)
Fluorescent dyes to measure ability of antimicrobial peptides to permeabilize membrane vesicles
Ion channel formation to assess the formation and stability of an antimicrobial-peptide-induced pore
Circular dichroism and orientated circular dichroism to measure the orientation and secondary structure of an antimicrobial peptide bound to a lipid bilayer
Dual polarization interferometry to measure the different mechanisms of antimicrobial peptides
Solid-state NMR spectroscopy to measure the secondary structure, orientation and penetration of antimicrobial peptides into lipid bilayers in the biologically relevant liquid-crystalline state
Neutron and X-ray diffraction to measure the diffraction patterns of peptide-induced pores within membranes in oriented multilayers or liquids
Molecular dynamics simulations to study the molecular behaviour and search for specific peptide-lipid interactions
Mass spectrometry to measure the proteomic response of microorganisms to antimicrobial peptides

Therapeutic research and use

Antimicrobial peptides have been used as therapeutic agents; their use is generally limited to intravenous administration or topical applications due to their short half-lives. As of January 2018 the following antimicrobial peptides were in clinical use:[29]

Activity beyond antibacterial functions

AMPs have been observed having functions other than bacterial and fungal killing. These activities include antiviral effects, but also roles in host defence such as anticancer functions and roles in neurology.[30] This has led to a movement for re-branding AMPs as "Host-defence peptides" to encompass the broad scope of activities AMPs can have.[31]

Anticancer properties

Some cecropins (e.g. cecropin A, and cecropin B) have anticancer properties and are called anticancer peptides (ACPs).[32]: 3  Hybrid ACPs based on Cecropin A have been studied for anticancer properties.[32]: 7.1  The fruit fly Defensin prevents tumour growth, suspected to bind to tumour cells owing to cell membrane modifications common to most cancer cells, such as phosphatidylserine exposure.[33]

Antibiofilm properties

Cecropin A can destroy planktonic and sessile

uropathogenic E. coli (UPEC) cells, either alone or when combined with the antibiotic nalidixic acid, synergistically clearing infection in vivo (in the insect host Galleria mellonella) without off-target cytotoxicity. The multi-target mechanism of action involves outer membrane permeabilization followed by biofilm disruption triggered by the inhibition of efflux pump activity and interactions with extracellular and intracellular nucleic acids.[34]

Other research

Recently there has been some research to identify potential antimicrobial peptides from prokaryotes,[35] aquatic organisms such as fish,[36][37] and shellfish,[38] and monotremes such as echidnas.[39][40]

Selectivity

In the competition of bacterial cells and host cells with the antimicrobial peptides, antimicrobial peptides will preferentially interact with the bacterial cell to the mammalian cells, which enables them to kill microorganisms without being significantly toxic to mammalian cells.[41]

With regard to cancer cells, they themselves also secrete human antimicrobial peptides including defensin, and in some cases, they are reported to be more resistant than the surrounding normal cells. Therefore, we cannot conclude that selectivity is always high against cancer cells.[42][43]

Factors

There are some factors that are closely related to the selectivity property of antimicrobial peptides, among which the cationic property contributes most. Since the surface of the bacterial membranes is more negatively charged than mammalian cells, antimicrobial peptides will show different affinities towards the bacterial membranes and mammalian cell membranes.[44]

In addition, there are also other factors that will affect the selectivity. It's well known that

H. pylori);[45] and the presence of these cholesterols will also generally reduce the activities of the antimicrobial peptides, due either to stabilization of the lipid bilayer or to interactions between cholesterol and the peptide. So the cholesterol in mammalian cells will protect the cells from attack by the antimicrobial peptides.[46]

Besides, the

transmembrane potential is well known to affect peptide-lipid interactions.[47] There's an inside-negative transmembrane potential existing from the outer leaflet to the inner leaflet of the cell membranes and this inside-negative transmembrane potential will facilitate membrane permeabilization probably by facilitating the insertion of positively charged peptides into membranes. By comparison, the transmembrane potential of bacterial cells is more negative than that of normal mammalian cells, so bacterial membrane will be prone to be attacked by the positively charged antimicrobial peptides.[citation needed
]

Similarly, it is also believed that increasing

electrostatic interactions
required for the initial interaction.

Molecular Basis of Cell Selectivity of Antimicrobial Peptides

Mechanism

The cell membranes of bacteria are rich in acidic

phospholipids, such as phosphatidylglycerol and cardiolipin.[41][48]

In contrast, the outer part of the membranes of plants and mammals is mainly composed of lipids without any net charges since most of the lipids with negatively charged headgroups are principally sequestered into the inner leaflet of the plasma membranes.

gangliosides. Therefore, the hydrophobic interaction between the hydrophobic face of amphipathic antimicrobial peptides and the zwitterionic phospholipids on the cell surface of mammalian cell membranes plays a major role in the formation of peptide-cell binding.[49]

Dual polarisation interferometry has been used in vitro to study and quantify the association to headgroup, insertion into the bilayer, pore formation and eventual disruption of the membrane.[50][51]

Control

A lot of effort has been put into controlling cell selectivity. For example, attempts have been made to modify and optimize the physicochemical parameters of the peptides to control the selectivities, including net charge,

Bacterial resistance

Bacteria use various resistance strategies to avoid antimicrobial peptide killing.[13]

  • Some microorganisms alter net surface charges. Staphylococcus aureus transports D-alanine from the cytoplasm to the surface teichoic acid which reduces the net negative charge by introducing basic amino groups.[54] S. aureus also modifies its anionic membranes via MprF with L-lysine, increasing the positive net charge.[54]
  • The interaction of antimicrobial peptides with membrane targets can be limited by capsule polysaccharide of Klebsiella pneumoniae.[55]
  • Salmonella species reduce the fluidity of their outer membrane by increasing hydrophobic interactions between an increased number of Lipid A acyl tails by adding myristate to Lipid A with 2-hydroxymyristate and forming hepta-acylated Lipid A by adding palmitate. The increased hydrophobic moment is thought to retard or abolish antimicrobial peptide insertion and pore formation. The residues undergo alteration in membrane proteins. In some Gram-negative bacteria, alteration in the production of outer membrane proteins correlates with resistance to killing by antimicrobial peptides.[56]
  • Non-typeable
    Hemophilus influenzae transports AMPs into the interior of the cell, where they are degraded. Furthermore, H. influenzae remodels its membranes to make it appear as if the bacterium has already been successfully attacked by AMPs, protecting it from being attacked by more AMPs.[57]
  • ATP-binding cassette transporters import antimicrobial peptides and the resistance-nodulation cell-division efflux pump exports antimicrobial peptides.[58] Both transporters have been associated with antimicrobial peptide resistance
  • Bacteria produce proteolytic enzymes, which may degrade antimicrobial peptides leading to their resistance.[59]
  • Outer membrane vesicles produced by Gram-negative bacteria bind the antimicrobial peptides and sequester them away from the cells, thereby protecting the cells.[60] The outer membrane vesicles are also known to contain various proteases, peptidases and other lytic enzymes, which may have a role in degrading the extracellular peptide and nucleic acid molecules, which if allowed to reach to the bacterial cells may be dangerous for the cells.
  • antimicrobial peptide resistance in Pseudomonas aeruginosa[61]

While these examples show that resistance can evolve naturally, there is increasing concern that using pharmaceutical copies of antimicrobial peptides can make resistance happen more often and faster. In some cases, resistance to these peptides used as a pharmaceutical to treat medical problems can lead to resistance, not only to the medical application of the peptides, but to the physiological function of those peptides.[62][63]

The ‘Trojan Horse’ approach to solving this problem capitalizes on the innate need for iron by pathogens. “Smuggling” antimicrobials into the pathogen is accomplished by linking them to siderophores for transport. While simple in concept, it has taken many decades of work to accomplish the difficult hurdle of transporting antimicrobials across the cell membranes of pathogens. Lessons learned from the successes and failures of siderophore-conjugate drugs evaluated during the development of novel agents using the ‘Trojan horse’ approach have been reviewed.[64]

Examples

Fruit flies infected by GFP-producing bacteria. Red-eyed flies lacking antimicrobial peptide genes are susceptible to infection, while white-eyed flies have a wild-type immune response.

Antimicrobial peptides are produced by species across the tree of life, including:

Research has increased in recent years to develop artificially-engineered mimics of antimicrobial peptides such as

C-terminal domain of human platelet factor IV.[70] Currently, the most widely used antimicrobial peptide is nisin; being the only FDA approved antimicrobial peptide, it is commonly used as an artificial preservative.[71]

Bioinformatics

Several bioinformatic databases exist to catalogue antimicrobial peptides. The Antimicrobial Peptide Database (APD) is the original and model database for antimicrobial peptides (https://aps.unmc.edu). Based on the APD, other databases have also been built, including ADAM (A Database of Anti-Microbial peptides),[72] BioPD (Biologically active Peptide Database), CAMP (Collection of sequences and structures of antimicrobial peptides),[73] DBAASP (Database of Antimicrobial Activity and Structure of Peptides), DRAMP(Data Repository of Antimicrobial Peptides)Welcome To Dramp Database,[74] and LAMP (Linking AMPs).

The Antimicrobial peptide databases may be divided into two categories on the basis of the source of peptides it contains, as specific databases and general databases. These databases have various tools for antimicrobial peptides analysis and prediction. For example, the APD has a widely used calculation interface. It also provides links to many other tools. CAMP contains AMP prediction, feature calculator, BLAST search, ClustalW, VAST, PRATT, Helical wheel etc. In addition, ADAM allows users to search or browse through AMP sequence-structure relationships. Antimicrobial peptides often encompass a wide range of categories such as antifungal, antibacterial, and antituberculosis peptides.

dbAMP:[75] Provides an online platform for exploring antimicrobial peptides with functional activities and physicochemical properties on transcriptome and proteome data. dbAMP is an online resource that addresses various topics such as annotations of antimicrobial peptides (AMPs) including sequence information, antimicrobial activities, post-translational modifications (PTMs), structural visualization, antimicrobial potency, target species with minimum inhibitory concentration (MIC), physicochemical properties, or AMP–protein interactions.[citation needed]

Tools such as PeptideRanker,[76] PeptideLocator,[77] and AntiMPmod[78][79] allow for the prediction of antimicrobial peptides while others have been developed to predict antifungal and anti-Tuberculosis activities.[80][81]

See also

References

  1. PMID 27663838
    .
  2. ^ .
  3. ^ .
  4. .
  5. .
  6. .
  7. .
  8. .
  9. .
  10. ^ .
  11. ^ .
  12. .
  13. ^ .
  14. .
  15. .
  16. . National Committee of Laboratory Safety and Standards (NCLSS)
  17. .
  18. .
  19. .
  20. ^ .
  21. .
  22. .
  23. .
  24. .
  25. .
  26. .
  27. .
  28. .
  29. .
  30. .
  31. .
  32. ^ .
  33. .
  34. .
  35. .
  36. .
  37. .
  38. .
  39. ^ Somasekhar M (24 April 2019). "In Spiny anteater's milk could be an alternative to antibiotics". BusinessLine. Chennai, India: Kasturi & Sons Ltd. Retrieved 17 January 2021.
  40. ^ "Egg-laying mammal's milk may help for novel antibiotics". Deccan Herald. India: The Printers Mysore. Press Trust of India. 25 April 2019. Retrieved 17 January 2021.
  41. ^
    PMID 18952049
    .
  42. .
  43. . Retrieved 7 February 2019.
  44. ^ .
  45. .
  46. ^ .
  47. ^ .
  48. .
  49. .
  50. .
  51. .
  52. .
  53. .
  54. ^ .
  55. .
  56. .
  57. .
  58. .
  59. .
  60. .
  61. .
  62. .
  63. .
  64. S2CID 73727689. {{cite book}}: |journal= ignored (help
    )
  65. ^ "Insect antimicrobial peptides OPM". Orientations of Proteins in Membranes database (OPM).
  66. PMID 30878358
    .
  67. ^ "Amphibian antimicrobial peptides". Orientations of Proteins in Membranes database (OPM).
  68. PMID 27613063
    .
  69. ^ Niedermaier H (9 February 2012). "Synthetic Mimics of Antimicrobial Peptides: A New Wave of Antibiotics". Department of Chemistry. University of Georgia. Archived from the original on 28 October 2016. Retrieved 27 October 2016.
  70. PMID 29401708
    .
  71. .
  72. .
  73. .
  74. .
  75. .
  76. .
  77. .
  78. .
  79. .
  80. .
  81. .

External links