Bilaminar embryonic disc
Bilaminar embryonic disc | |
---|---|
Human embryo | |
Identifiers | |
TE | embryonic disc_by_E6.0.1.1.3.0.1 E6.0.1.1.3.0.1 |
Anatomical terminology] |
The bilaminar embryonic disc, bilaminar blastoderm or embryonic disc is the distinct two-layered structure of cells formed in an embryo. In the development of the human embryo this takes place by day eight. It is formed when the inner cell mass, also known as the embryoblast, forms a bilaminar disc of two layers, an upper layer called the epiblast (primitive ectoderm) and a lower layer called the hypoblast (primitive endoderm), which will eventually form into fetus.[1][2][3] These two layers of cells are stretched between two fluid-filled cavities at either end: the primitive yolk sac and the amniotic sac.
The epiblast is adjacent to the
The epiblast migrates away from the trophoblast downwards, forming the amniotic cavity in between, the lining of which is formed from
Initial formation
The one-celled
Amniotic sac formation

Beginning on day eight, the amniotic sac is the first new cavity to form during the second week of development.[4] Fluid collects between the epiblast and the hypoblast, which splits the epiblast into two portions. The layer at the embryonic pole grows around the amniotic sac, creating a barrier from the cytotrophoblast. This becomes known as the amnion, which is one of the four fetal membranes and the cells it comprises are referred to as amnioblasts.[6] Although the amniotic sac is initially smaller than the blastocyst it becomes larger by week eight until the entire embryo is encompassed by the amnion.[4]
Yolk sac and gestational sac formation
The process of the formation of the
While the primary yolk sac is forming, extraembryonic mesoderm migrate into the blastocyst cavity and fill it with loosely packed cells. When the extraembryonic mesoderm is separated into two portions, a new gap arises called the gestational sac. This new cavity is responsible for detaching the embryo and, its amnion and yolk sac, from the far wall of the blastocyst, which is now named the chorion. When the extraembryonic mesoderm splits into two layers, the amnion, yolk sac and chorion also become double-layered. The amnion and chorion are composed of extraembryonic ectoderm and mesoderm, whereas the yolk sac is composed of extraembryonic endoderm and mesoderm. By day 13, the connecting stalk, a dense portion of extraembryonic mesoderm, restrains the embryonic disc in the gestational sac.[4]
Yolk sac during development
Like the amnion, the yolk sac is a
Epiblast cells during gastrulation
In the third week, gastrulation begins with the formation of the
Definitive endoderm development
On day 16, epiblast cells that are next to the primitive streak experience epithelial-to-mesenchymal transformation as they ingress through the primitive streak. The first wave of epiblast cells takes over the hypoblast, which slowly becomes replaced by new cells that eventually constitute the definitive endoderm. The definitive endoderm is what makes the lining of the gut and other associated gut structures.[4]
Intraembryonic mesoderm development
Also beginning on day 16, some of the ingressing epiblast cells make their way into the area between the epiblast and the newly forming definitive endoderm. This layer of cells becomes known as intraembryonic mesoderm. After the cells have moved bilaterally from the primitive streak and matured, four divisions of intraembryonic mesoderm are made:
Ectoderm development
After the definitive endoderm and intraembryonic mesoderm formations are complete, the remaining epiblast cells do not ingress through the primitive streak; rather they remain on the outside and form the ectoderm. It is not long until the ectoderm becomes the neural plate and surface ectoderm. Due to the fact that an embryo develops cranial to caudal, the formation of ectoderm does not happen at the same rate during development. The more inferior portion of the primitive streak will still have epiblast cells ingressing to make intraembryonic mesoderm, while the more superior portion has already stopped ingressing. However, eventually gastrulation finishes and the three germ layers are complete.[4]
References
- ISBN 9780781790697.
- ^ ISBN 9781455706846.)
{{cite book}}
: CS1 maint: location missing publisher (link - ^ "27.3B: Bilaminar Embryonic Disc Development". Medicine LibreTexts. 24 July 2018. Retrieved 12 June 2022.
- ^ a b c d e f g h i j k l Schoenwolf, Gary C., and William J. Larsen. Larsen's Human Embryology. 4th ed. Philadelphia: Churchill Livingstone/Elsevier, 2009. Print.
- ^ "Bilaminar Embryonic Disc." Atlas of Human Embryology. Chronolab A.G. Switzerland, n.d. Web. 27 Nov. 2012. <http://www.embryo.chronolab.com/formation.htm Archived 2012-11-19 at the Wayback Machine>.
- ^ "10.1 Early Development and Implantation." The Embryoblast. N.p., n.d. Web. 29 Nov. 2012. <http://www.embryology.ch/anglais/fplacenta/fecond04.html>
- ^ "Home". gastrulation.org.