Blastocyst

Source: Wikipedia, the free encyclopedia.
Blastocyst
Gastrula
Identifiers
Latinblastocystis
MeSHD001755
TEE2.0.1.2.0.0.12
FMA83041
Anatomical terminology]

The blastocyst is a structure formed in the early

fetal membranes that surround the embryo. The placenta derives from the embryonic chorion (the portion of the chorion that develops villi) and the underlying uterine tissue of the mother.[4][5]

The name "blastocyst" arises from the Greek βλαστός blastós ("a sprout") and κύστις kýstis ("bladder, capsule").

In non-mammalian animals, this is a structure consisting of an undifferentiated ball of cells and is called a

blastula
.

In humans, blastocyst formation begins about five days after

morula, the early embryonic stage of a ball of 16 cells
. The blastocyst has a diameter of about 0.1–0.2
hatches from the zona pellucida, the egg coat that prevents adherence to the fallopian tube as the pre-embryo
makes its way to the uterus.

The use of blastocysts in

stem cell therapies including cell repair, replacement and regeneration. Assisted zona hatching
may also be used in IVF, and other fertility treatments.

Development cycle

The blastocyst stage occurs between 5 and 9 days after conception. During

germinal stage of embryogenesis, and the beginning of gestation.[medical citation needed
]

Blastocyst formation

The

morula. Until this stage in development, all cells (blastomeres) are autonomous and not specified to any particular subsequent functional development. The morula then develops by cavitation to become the blastocyst, or in many other animals the blastula. Cellular differentiation then develops the morula's cells into two types: trophoblast cells that surround the blastocoel and an inner mass of cells (the embryoblast). The inner cell mass consists of embryonic stem cells.[7] The conceptus is then known as the blastocyst.[8]

Before cell differentiation takes place there are two transcription factors, Oct-4 and nanog that are uniformly expressed on all of the cells, but both of these transcription factors are turned off in the trophoblast once it has formed.[9] The side of the blastocyst where the inner cell mass forms is called the embryonic pole, and the opposite side is the abembryonic pole. The outer layer of trophoblast cells, resulting from compaction, pumps sodium ions into the blastocyst, which causes water to enter through osmosis and form the internal fluid-filled blastocyst cavity (blastocoel). The blastocoel, trophoblast cells, and inner cell mass are hallmarks of the blastocyst.[10]

Implantation

autocrine growth factors such as human chorionic gonadotropin (hCG) and insulin-like growth factor (IGF) allow the blastocyst to further invade the endometrium.[12]

Implantation in the uterine wall allows for the next step in embryogenesis, gastrulation, which includes the formation of the placenta from trophoblastic cells and differentiation of the inner cell mass into the amniotic sac and epiblast.

Structure

There are two types of blastomere cells:[13]

The blastocoel fluid cavity contains

growth factors, and other molecules necessary for cellular differentiation.[17]

Cell specification

Multiple processes control cell lineage specification in the blastocyst to produce the trophoblast, epiblast, and primitive endoderm. These processes include gene expression, cell signaling, cell-cell contact and positional relationships, and epigenetics.

Once the inner cell mass has been established within the blastocyst, it prepares for further specification into the epiblast and primitive endoderm. This process of specification known as

Oct4 and Nanog transcription factors in the trophoblast.[19]
These genomic alterations allow for the progressive specification of both epiblast and primitive endoderm lineages at the end of the blastocyst phase of development preceding gastrulation. Much of the research conducted on these early embryonic stages is on mouse embryos and specific factors may differ between mammals.

During implantation, the trophoblast gives rise to extraembryonic membranes and cell types that will eventually form most of the fetal placenta, the specialized organ through which the embryo obtains maternal nourishment necessary for subsequent exponential growth.[20] The specification of the trophoblast is controlled by the combination of morphological cues arising from cell polarity with differential activity of signaling pathways such as Hippo and Notch, and the restriction to outer cells of lineage specifiers such as CDX2.[21]

In the mouse, primordial germ cells are specified from epiblast cells, a process that is accompanied by extensive genome-wide epigenetic reprogramming.[22] Reprogramming involves global DNA demethylation and chromatin reorganization resulting in cellular totipotency.[22] The process of genome-wide demethylation involves the DNA base excision repair pathway.[23]

Trophoblasts express integrin on their cell surfaces which allow for adhesion to the extracellular matrix of the uterine wall. This interaction allows for implantation and triggers further specification into the three different cell types, preparing the blastocyst for gastrulation.[24]

Clinical implications

Pregnancy tests

The level of human chorionic gonadotropin (hCG) secreted by the blastocyst during implantation is the factor measured in a pregnancy test. hCG can be measured in both blood and urine to determine whether a woman is pregnant. More hCG is secreted in a multiple pregnancy. Blood tests of hCG can also be used to check for abnormal pregnancies.

In vitro fertilization

In vitro fertilization
(IVF) is an alternative to traditional in vivo fertilization for fertilizing an egg with sperm and implanting that embryo into a female's womb. For many years the embryo was inserted into the uterus two to three days after fertilization. However at this stage of development it is very difficult to predict which embryos will develop best, and several embryos were typically implanted. Several implanted embryos increased the likelihood of a developing fetus but also led to the development of multiple fetuses. This was a major problem and drawback for using embryos in IVF.

The use of blastocysts for human IVF has proved successful. A blastocyst is implanted five to six days after the eggs have been fertilized.[25] After five or six days it is much easier to determine which embryos will result in healthy live births. Knowing which embryos will succeed allows just one blastocyst to be implanted, cutting down dramatically on the health risk and expense of multiple births. Now that the nutrient requirements for embryonic and blastocyst development have been determined, it is much easier to give embryos the correct nutrients to sustain them into the blastocyst phase.

Embryo transfer following in vitro fertilization is a procedure in which a catheter is inserted into the vagina, guided through the cervix via ultrasound, and into the uterine cavity where the blastocysts are inserted into the womb.

Blastocysts also offer an advantage because they can be used to genetically test the cells to check for genetic problems. There are enough cells in a blastocyst that a few

preimplantation genetic screening (PGS), or specific conditions such as cystic fibrosis, often known as preimplantation genetic diagnosis (PGD).[26]

Embryo transfer process

In an

womb
.

See also

References

Public domain This article incorporates text in the public domain from the 20th edition of Gray's Anatomy (1918)

  1. ^ "27.2C: Blastocyst Formation". Medicine LibreTexts. 24 July 2018. Retrieved 11 October 2022.
  2. ^ .
  3. ^ Gilbert, Scott F. (2000). "Early Mammalian Development". Developmental Biology. 6th edition. Retrieved 13 May 2022.
  4. ^ "trophoblast | embryology". Encyclopedia Britannica. Retrieved 2021-11-01.
  5. .
  6. .
  7. ^ Molnar, Charles; Gair, Jane (14 May 2015). "24.6. Fertilization and Early Embryonic Development". Retrieved 19 October 2022.
  8. PMID 28700688
    .
  9. ISBN 9781455706846.{{cite book}}: CS1 maint: location missing publisher (link
    )
  10. ^ Gilbert SF (2000). "Early Mammalian Development". Developmental Biology (6th ed.). Sunderland (MA): Sinauer Associates.
  11. PMID 23290997
    .
  12. .
  13. ]
  14. ^ Schoenwolf GC, Larsen WJ (2009). Larsen's Human Embryology (4th ed.). Philadelphia: Churchill Livingstone/Elsevier. [page needed]
  15. PMID 15985635
    .
  16. .
  17. .
  18. .
  19. .
  20. .
  21. .
  22. ^ .
  23. .
  24. PMID 7529679. Archived from the original
    on 2020-05-27. Retrieved 2013-12-10.
  25. .
  26. .

External links