Cdc6

Source: Wikipedia, the free encyclopedia.
Cell division protein Cdc6/18
Identifiers
SymbolCdc6
InterProIPR016314
Orc1/Cdc6-type DNA replication protein, archaea
Crystal Structure of CDC6 from P. aerophilum (PDB: 1FNN​). Green and blue domains are AAA domains; red domain is the Cdc6 C-terminal HTH domain (infobox below).[1]
Identifiers
SymbolOrc1/Cdc6_arc
InterProIPR014277
Cdc6/Orc1, C-terminal
Identifiers
SymbolCdc6_C
PfamPF09079
InterProIPR015163
CDDcd08768
Available protein structures:
Pfam  structures / ECOD  
PDBRCSB PDB; PDBe; PDBj
PDBsumstructure summary

Cdc6, or cell division cycle 6, is a

eukaryotic cells. It is mainly studied in the budding yeast Saccharomyces cerevisiae (P09119). It is an essential regulator of DNA replication and plays important roles in the activation and maintenance of the checkpoint mechanisms in the cell cycle that coordinate S phase and mitosis. It is part of the pre-replicative complex (pre-RC) and is required for loading minichromosome maintenance (MCM) proteins onto the DNA, an essential step in the initiation of DNA synthesis. In addition, it is a member of the family of AAA+ ATPases and highly related to ORC1; both are the same protein in archaea.[2]

Function

Potential role of Cdc6 at the initiation of DNA replication.[3]

CDC6 is an

Cdt1 and the MCM complex (containing MCM2-7p). CDC6 assembles after ORC in an ATP dependent manner and is required for loading MCM proteins onto the DNA. Reconstruction of electron microscope images showed that the ORC-CDC6 complex forms a ring-shaped structure with similar dimensions to those of ring-shaped MCM helicase.[4] A near-atomic resolution model of the entire ORC-Cdc6-Cdt1-Mcm2-7 (OCCM) complex with DNA was assembled from EM data in 2017.[5]
It is thought that the CDC6-Cdt1 complex uses ATP hydrolysis to thread DNA through the central hole of the MCM doughnut.
p34cdc2/CDC28 M phase kinase, thus nuclear division is suppressed.[9]

Regulation

CDC6 is normally present at high levels during the G1 phase of the

ubiquitinylation and afterwards degraded by the proteasome
. Thus, the regulation of CDC6 is tightly correlated to the activity of Cdk2 and since Cdk2-activity is oscillating once per cell cycle, the accumulation and degradation of CDC6 also oscillates.

Two states can be distinguished. In the first state (during G1 phase) Cdk2-activity is low, CDC6 can accumulate, hence the pre-RC can be formed but not activated. In the second state Cdk2-activity is high, CDC6 becomes inactivated, hence the pre-RC is activated but not formed. This change assures that DNA replication is performed only once per cell cycle. It has been shown that overexpression of CDC6 does not induce re-replication in cognate cells, probably due to inhibition through CDK that resets the cell cycle clock to G1. Nevertheless, it has been suggested that regulation of CDC6 is one of several redundant mechanisms that prevent re-replication of the DNA in eukaryotic cells.[10]

Structure

Crystal Structure of CDC6 from Pyrobaculum aerophilum. Domain I in green, domain II in blue and domain III in red. Beta-sheets are shown in orange.

The crystallographic structure of a Cdc6/Orc1-related protein from the archaeon Pyrobaculum aerophilum has been solved and three structural domains have been identified.[1] Domain I and II form the ATP binding/hydrolysis site and are similar to other AAA+ ATPases. Domain III is structurally related to a winged-helix domain, thus may interact with origin DNA. From studies with E. coli γ clamp loading complex, it was suggested that domain III mediates protein-protein interactions with other AAA+ ATPases in the pre-RC, thus suggesting that the CDC6 builds a homodimer in its native form. The domains I and II form a cashew-shaped molecule that bind ATP in the cleft and additionally build the sensor motif for ATP/ADP recognition. These domains are also thought to mediate subsequent conformational changes. Nevertheless, the exact functional roles of these domains remain unclear.[8]

Disease

It has been shown CDC6 shows

epigenetic modification of chromatin at the INK4/ARF locus. In addition, CDC6 overexpression in primary cells may promote DNA hyper-replication and induce a senescence response similar to that caused by oncogene activation. These findings indicate that deregulation of CDC6 expression in human cells poses a serious risk of carcinogenesis.[3] Down-regulation of CDC6 in prostate cancer was observed and associated with phenotypic characteristics of aggressive prostate cancer.[11]
Furthermore, it has been observed that Cdc6 is greatly up-regulated in

See also

References

External links

This page is based on the copyrighted Wikipedia article: Cdc6. Articles is available under the CC BY-SA 3.0 license; additional terms may apply.Privacy Policy