Origin recognition complex

Source: Wikipedia, the free encyclopedia.
Origin recognition complex subunit 2
Identifiers
SymbolORC2
PfamPF04084
InterProIPR007220
Available protein structures:
Pfam  structures / ECOD  
PDBRCSB PDB; PDBe; PDBj
PDBsumstructure summary
Origin recognition complex (ORC) subunit 3 N-terminus
Identifiers
SymbolORC3_N
PfamPF07034
InterProIPR010748
Available protein structures:
Pfam  structures / ECOD  
PDBRCSB PDB; PDBe; PDBj
PDBsumstructure summary
Origin recognition complex subunit 6 (ORC6)
Identifiers
SymbolORC6
PfamPF05460
InterProIPR008721
Available protein structures:
Pfam  structures / ECOD  
PDBRCSB PDB; PDBe; PDBj
PDBsumstructure summary

In

replication origins throughout the cell cycle.[4]

ORC directs

The ORC is present throughout the cell cycle bound to replication origins, but is only active in late mitosis and early G1.

In yeast, ORC also plays a role in the establishment of silencing at the

transcriptionally silent chromatin at HML and HMR by recruiting the Sir1 silencing protein to the HML and HMR silencers.[7][18][19]

Both Orc1 and Orc5 bind ATP, though only Orc1 has

binding of ATP by Orc1 is required for ORC binding to DNA and is essential for cell viability.[11] The ATPase activity of Orc1 is involved in formation of the pre-RC.[21][22][23] ATP binding by Orc5 is crucial for the stability of ORC as a whole. Only the Orc1-5 subunits are required for origin binding; Orc6 is essential for maintenance of pre-RCs once formed.[24] Interactions within ORC suggest that Orc2-3-6 may form a core complex.[4] A 2020 report suggests that budding yeast ORC dimerizes in a cell cycle dependent manner to control licensing.[25][26]

Proteins

This process was initiated by the loading of Mcm2-7 onto the chromatid by the ORC and associated proteins

The following proteins are present in the ORC:

ORC Protein Subunits,
orthology and nomenclature by species[27]
S. cerevisiae S. pombe D. melanogaster Vertebrates
ORC 1-6 ORC 1-6 ORC 1-6 ORC 1-6
Cdc6 Cdc18 Cdc6 Cdc6
Cdt1/Tah11/Sid2 Cdt1 DUP Cdt1/RLF-B
Mcm2 Mcm2/Cdc19/Nda1 Mcm2 Mcm2
Mcm3 Mcm3 Mcm3 Mcm3
Cdc54/Mcm4 Cdc21 DPA Mcm4
Cdc46/Mcm5 Mcm5/Nda4 Mcm5 Mcm5
Mcm6 Mcm6/Mis5 Mcm6 Mcm6
Cdc47/Mcm7 Mcm7 Mcm7 mcm7

Archaea feature a simplified version of the ORC, Mcm, and as a consequence the combined pre-RC. Instead of using six different mcm proteins to form a pseudo-symmetrical heterohexamer, all six subunits in the archaeal MCM are the same. They usually have multiple proteins that are homologous to both Cdc6 and Orc1, some of which perform the function of both. Unlike eukaryotic Orc, they do not always form a complex. In fact, they have divergent complex structures when these do form. Sulfolobus islandicus also uses a Cdt1 homologue to recognize one of its replication origins.[28]

Autonomously replicating sequences

Budding yeast

Autonomously Replicating Sequences (ARS), first discovered in budding yeast, are integral to the success of the ORC. These 100-200bp sequences facilitate replication activity during S phase. ARSs can be placed at any novel location of the chromosomes of budding yeast and will facilitate replication from those sites. A highly conserved sequence of 11bp (known as the A element) is thought to be essential for origin function in budding yeast.[27] The ORC was originally identified by its ability to bind to the A element of the ARS in budding yeast.

Animals

Animal cells contain a much more cryptic version of an ARS, with no

replication origins gather into bundles called replicon clusters. Each cluster's replicons are similar in length, but individual clusters have replicons of varying length. These replicons all have similar basic residues to which the ORC binds, which in many ways mimic the conserved 11bp A element. All of these clusters are simultaneously activated during S phase.[27]

Role in pre-RC assembly

The ORC is essential for the loading of MCM complexes (

Pre-RC) onto DNA. This process is dependent on the ORC, Noc3, Cdc6, and Cdt1 – involving several ATP controlled recruiting events. First, the ORC, Noc3p and Cdc6 form a complex on origin DNA (marked by ARS type regions). New ORC/Noc3/Cdc6 complexes then recruit Cdt1/Mcm2-7 molecules to the site. Once this massive ORC/Noc3/Cdc6/Cdt1/Mcm2-7 complex is formed, the ORC/Noc3/Cdc6/Cdt1 molecules work together to load Mcm2-7 onto the DNA itself by hydrolysis of ATP by Cdc6. Cdc6's phosphorylative activity is dependent on both the ORC and origin DNA. This leads to Cdt1 having decreased stability on the DNA and falling off of the complex leading to Mcm2-7 loading on to the DNA.[29][27][30][31] The structure of the ORC, MCM, as well as the intermediate OCCM complex has been resolved.[32]

Origin binding activity

Although the ORC is composed of six discrete subunits, only one of these has been found to be significant - ORC1. In vivo studies have shown that Lys-263 and Arg-367 are the basic residues responsible for faithful ORC loading. These molecules represent the above-mentioned ARS.[33] ORC1 interacts with ATP and these basic residues in order to bind the ORC to origin DNA. It has been established that this occurs far before replication, and that the ORC itself is already bound to Origin DNA by the time any Mcm2-7 loading occurs.[31] When Mcm2-7 is first loaded it completely encircles the DNA and helicase activity is inhibited. In S phase, the Mcm2-7 complex interacts with helicase cofactors Cdc45 and GINS to isolate a single DNA strand, unwind the origin, and begin replication down the chromosome. In order to have bidirectional replication, this process happens twice at an origin. Both loading events are mediated by one ORC via an identical process as the first.[34]

See also

References

Further reading

This article incorporates text from the public domain Pfam and InterPro: IPR010748
This article incorporates text from the public domain Pfam and InterPro: IPR008721