Cetacean intelligence

Source: Wikipedia, the free encyclopedia.
A female bottlenose dolphin performing with her trainer. They are considered one of the most intelligent cetaceans.

Cetacean intelligence is the overall

aquatic mammals belonging in the infraorder Cetacea (cetaceans), including baleen whales, porpoises, and dolphins. In 2014, a study found for first time that the long-finned pilot whale
has more neocortical neurons than any mammal studied to date, including humans.

Brain

Size

Allometric analysis indicates that in general, mammalian brain size scales at approximately the 23 or 34 exponent of body mass.[3] Comparison of actual brain size with the size expected from allometry provides an encephalization quotient
(EQ) that can be used as a more accurate indicator of an animal's intelligence.

Brain of the sperm whale, considered the largest brain in the animal kingdom

Spindle cells (neurons without extensive branching) have been discovered in the brains of the humpback whale, fin whale, sperm whale, orca,[15][16] bottlenose dolphins, Risso's dolphins, and beluga whales.[17] Humans, great apes, and elephants, species all well known for their high intelligence, are the only others known to have spindle cells.[18]: 242  Spindle neurons appear to play a central role in the development of intelligent behavior. Such a discovery may suggest a convergent evolution of these species.[19]

Structure

Brain of a human (left), compared to that of a black rhinoceros (center) and a common dolphin (right)

Elephant brains also show a complexity similar to dolphin brains, and are also more convoluted than that of humans,[20] and with a cortex thicker than that of cetaceans.[21] It is generally agreed that the growth of the neocortex, both absolutely and relative to the rest of the brain, during human evolution, has been responsible for the evolution of human intelligence, however defined. While a complex neocortex usually indicates high intelligence, there are exceptions. For example, the echidna has a highly developed brain, yet is not widely considered very intelligent,[22] though preliminary investigations into their intelligence suggest that echidnas are capable of more advanced cognitive tasks than were previously assumed.[23]

In 2014, it was shown for the first time that a species of dolphin, the long-finned pilot whale, has more neocortical neurons than any mammal studied to date including humans.[24] Unlike

asphyxiation.[26] Ridgway reports that EEGs show alternating hemispheric asymmetry in slow waves during sleep, with occasional sleep-like waves from both hemispheres.[27]
This result has been interpreted to mean that dolphins sleep only one hemisphere of their brain at a time, possibly to control their voluntary respiration system or to be vigilant for predators.

The dolphin's greater dependence on sound processing is evident in the structure of its brain: its neural area devoted to visual imaging is only about one-tenth that of the human brain, while the area devoted to acoustical imaging is about 10 times as large.[28] Sensory experiments suggest a great degree of cross-modal integration in the processing of shapes between echolocative and visual areas of the brain.

Brain evolution

The evolution of encephalization in cetaceans is similar to that in primates.[29] Though the general trend in their evolutionary history increased brain mass, body mass, and encephalization quotient, a few lineages actually underwent decephalization, although the selective pressures that caused this are still under debate.[30] Among cetaceans, Odontoceti tend to have higher encephalization quotients than Mysticeti, which is at least partially due to the fact that Mysticeti have much larger body masses without a compensating increase in brain mass.[31] As far as which selective pressures drove the encephalization (or decephalization) of cetacean brains, current research espouses a few main theories. The most promising suggests that cetacean brain size and complexity increased to support complex social relations.[32][31][30] It could also have been driven by changes in diet, the emergence of echolocation, or an increase in territorial range.[31][30]

Problem-solving ability

Some research shows that dolphins, among other animals, understand concepts such as numerical continuity, though not necessarily counting.[33] Dolphins may be able to discriminate between numbers.[34]

Several researchers observing animals' ability to learn set formation tend to rank dolphins at about the level of elephants in intelligence,[35] and show that dolphins do not surpass other highly intelligent animals in problem solving.[36] A 1982 survey of other studies showed that in the learning of "set formation", dolphins rank highly, but not as high as some other animals.[37]

Behavior

Pod characteristics

Interspecies pod of bottlenose dolphins and false killer whales

Dolphin group sizes vary quite dramatically.

audience waves". This is achieved by sight, and possibly also echolocation. One hypothesis proposed by Jerison (1986) is that members of a pod of dolphins are able to share echolocation results with each other to create a better understanding of their surroundings.[38]

Southern resident orcas in British Columbia, Canada, and Washington, United States, live in extended family groups. The basis of the southern resident orca social structure is the matriline, consisting of a matriarch and her descendants of all generations. A number of matrilines form a southern resident orca pod, which is ongoing and extremely stable in membership, and has its own dialect which is stable over time. A southern resident calf is born into the pod of their mother and remains in it for life.[39]

Members of a southern resident orca family unit travelling in formation with the mother and youngest offspring in the centre

A cetacean dialect is a socially–determined vocal tradition. The complex vocal communication systems of orcas correspond with their large brains and complex social structure.[40] The three southern resident orca pods share some calls with one another, and also have unique calls.[41] Discussing the function of resident orca dialects, researchers John Ford, Graeme Ellis and Ken Balcomb wrote, "It may well be that dialects are used by the whales as acoustic indicators of group identity and membership, which might serve to preserve the integrity and cohesiveness of the social unit."[41] Resident orcas form closed societies with no emigration or dispersal of individuals, and no gene flow with other orca populations.[42] There is evidence that other species of dolphins may also have dialects.[43][44]

In

Sarasota, Florida, and Smolker in Shark Bay, Australia, females of a community are all linked either directly or through a mutual association in an overall social structure known as fission-fusion. Groups of the strongest association are known as "bands", and their composition can remain stable over years. There is some genetic evidence that band members may be related, but these bands are not necessarily limited to a single matrilineal line. There is no evidence that bands compete with each other. In the same research areas, as well as in Moray Firth, Scotland
, males form strong associations of two to three individuals, with a coefficient of association between 70 and 100. These groups of males are known as "alliances", and members often display synchronous behaviors such as respiration, jumping, and breaching. Alliance composition is stable on the order of tens of years, and may provide a benefit for the acquisition of females for mating. The complex social strategies of marine mammals such as bottlenose dolphins, "provide interesting parallels" with the social strategies of elephants and chimpanzees.[45]: 519 

Complex play

Dolphins are known to engage in complex play behavior, which includes such things as producing stable underwater toroidal air-core vortex rings or "bubble rings".[46] There are two main methods of bubble ring production: rapid puffing of a burst of air into the water and allowing it to rise to the surface, forming a ring; or swimming repeatedly in a circle and then stopping to inject air into the helical vortex currents thus formed. The dolphin will often then examine its creation visually and with sonar. They also appear to enjoy biting the vortex-rings they have created, so that they burst into many separate normal bubbles and then rise quickly to the surface.[47] Certain whales are also known to produce bubble rings or bubble nets for the purpose of foraging. Many dolphin species also play by riding in waves, whether natural waves near the shoreline in a method akin to human "body-surfing", or within the waves induced by the bow of a moving boat in a behavior known as bow riding.

Cross-species cooperation

There have been instances in captivity of various species of dolphin and porpoise helping and interacting across species, including helping beached whales.

human swimmers in need, and in at least one instance a distressed dolphin approached human divers seeking assistance.[49]

Creative behavior

A pair of bottlenose dolphins responding back with squawking behavior

Aside from having exhibited the ability to learn complex tricks, dolphins have also demonstrated the ability to produce creative responses. This was studied by

Sea Life Park in Hawaii, and was published as The Creative Porpoise: Training for Novel Behavior in 1969. The two test subjects were two rough-toothed dolphins
(Steno bredanensis), named Malia (a regular show performer at Sea Life Park) and Hou (a research subject at adjacent Oceanic Institute). The experiment tested when and whether the dolphins would identify that they were being rewarded (with fish) for originality in behavior and was very successful. However, since only two dolphins were involved in the experiment, the study is difficult to generalize.

Starting with the dolphin named Malia, the method of the experiment was to choose a particular behavior exhibited by her each day and reward each display of that behavior throughout the day's session. At the start of each new day Malia would present the prior day's behavior, but only when a new behavior was exhibited was a reward given. All behaviors exhibited were, at least for a time, known behaviors of dolphins. After approximately two weeks Malia apparently exhausted "normal" behaviors and began to repeat performances. This was not rewarded.[50]

According to Pryor, the dolphin became almost despondent. However, at the sixteenth session without novel behavior, the researchers were presented with a flip they had never seen before. This was reinforced.[50] As related by Pryor, after the new display: "instead of offering that again she offered a tail swipe we'd never seen; we reinforced that. She began offering us all kinds of behavior that we hadn't seen in such a mad flurry that finally we could hardly choose what to throw fish at".[50]

The second test subject, Hou, took thirty-three sessions to reach the same stage. On each occasion the experiment was stopped when the variability of dolphin behavior became too complex to make further positive reinforcement meaningful.

The same experiment was repeated with humans, and it took the volunteers about the same length of time to figure out what was being asked of them. After an initial period of frustration or anger, the humans realised they were being rewarded for novel behavior. In dolphins this realisation produced excitement and more and more novel behaviors – in humans it mostly just produced relief.[51]

Captive orcas have displayed responses indicating they get bored with activities. For instance, when Paul Spong worked with the orca Skana, he researched her visual skills. However, after performing favorably in the 72 trials per day, Skana suddenly began consistently getting every answer wrong. Spong concluded that a few fish were not enough motivation. He began playing music, which seemed to provide Skana with much more motivation.[52]

At the Institute for Marine Mammal Studies in Mississippi, it has also been observed that the resident dolphins seem to show an awareness of the future. The dolphins are trained to keep their own tank clean by retrieving rubbish and bringing it to a keeper, to be rewarded with a fish. However, one dolphin, named Kelly, has apparently learned a way to get more fish, by hoarding the rubbish under a rock at the bottom of the pool and bringing it up one small piece at a time.[51]

Use of tools

As of 1984, scientists have observed wild bottlenose dolphins in

sponge and wrapping them around their rostra, presumably to prevent abrasions and facilitate digging.[53]

Communication

Audiovisual material of a
Odontocete
(toothed whale) vocal production is classified in three categories: clicks, whistles, and pulsed calls:

Vocalizations of Southern Alaskan Resident Orcas
  • Pulsed calls are significant for a few cetacean species, such as the narwhal,[58] and the orca. These calls have distinct tonal qualities and a complex harmonic structure. Typically 0.5–1.5 s in duration, they are the primary social vocalization of orcas.[55] Researchers John Ford, Graeme Ellis, and Ken Balcomb wrote, "By varying the timbre and frequency structure of the calls, the whales can generate a variety of signals…Most calls contain sudden shifts or rapid sweeps in pitch, which give them distinctive qualities recognizable over distance and background noise."[59]

There is strong evidence that some specific whistles, called signature whistles, are used by dolphins to identify and/or call each other; dolphins have been observed emitting both other specimens' signature whistles, and their own. A unique signature whistle develops quite early in a dolphin's life, and it appears to be created in imitation of the signature whistle of the dolphin's mother.[60] Imitation of the signature whistle seems to occur only among the mother and its young, and among befriended adult males.[61]

Xitco reported the ability of dolphins to eavesdrop passively on the active echolocative inspection of an object by another dolphin. Herman calls this effect the "acoustic flashlight" hypothesis, and may be related to findings by both Herman and Xitco on the comprehension of variations on the pointing gesture, including human pointing, dolphin postural pointing, and human gaze, in the sense of a redirection of another individual's attention, an ability which may require theory of mind.[citation needed]

The environment where dolphins live makes experiments much more expensive and complicated than for many other species; additionally, the fact that cetaceans can emit and hear

MHz
-capable hardware is often used.

In addition to the acoustic communication channel, the

pigmentation of the body may be used, for example with "flashes" of the hypopigmented ventral area of some species, as can the production of bubble streams during signature whistling. Also, much of the synchronous and cooperative behaviors, as described in the Behavior
section of this entry, as well as cooperative foraging methods, likely are managed at least partly by visual means.

Experiments have shown that they can learn human sign language and can use whistles for 2-way human–animal communication. Phoenix and Akeakamai, bottlenose dolphins, understood individual words and basic sentences like "touch the frisbee with your tail and then jump over it".[62] Phoenix learned whistles, and Akeakamai learned sign language. Both dolphins understood the significance of the ordering of tasks in a sentence.

A study conducted by Jason Bruck of the University of Chicago showed that bottlenose dolphins can remember whistles of other dolphins they had lived with after 20 years of separation. Each dolphin has a unique whistle that functions like a name, allowing the marine mammals to keep close social bonds. The new research shows that dolphins have the longest memory yet known in any species other than

humans.[63][64]

Self-awareness

great apes, possess self-awareness.[65]

The most widely used test for self-awareness in animals is the mirror test, developed by Gordon Gallup in the 1970s, in which a temporary dye is placed on an animal's body, and the animal is then presented with a mirror.[66]

In 1995, Marten and Psarakos used television to test dolphin self-awareness.[67] They showed dolphins real-time footage of themselves, recorded footage, and another dolphin. They concluded that their evidence suggested self-awareness rather than social behavior. While this particular study has not been repeated since then, dolphins have since passed the mirror test.[68] However, some researchers have argued that evidence for self-awareness has not been convincingly demonstrated.[69]

See also

References

  1. ^ McKie, Robin (2007-04-29). "Clever raven proves that it's no birdbrain". The Guardian. London.
  2. ^ "Speculations on the Evolution of Intelligence in Multicellular Organisms". Dale A. Russell.
  3. ^ Moore, Jim. "Allometry". Archived from the original on 2019-03-27. Retrieved 2007-02-09.
  4. ^ "Sperm Whales (Physeter macrocephalus)". Retrieved 2007-02-09.
  5. ^ Brain size[circular reference]
  6. ^ "Brain facts and figures". Retrieved 2006-10-24.
  7. ^ Fields, R. Douglas (2008-01-15). "Are Whales Smarter than We Are?". Mind Matters. Scientific American Community. Archived from the original on July 27, 2010. Retrieved 2010-10-13.
  8. ^ "Origin and evolution of large brains in toothed whales", Lori Marino1,Daniel W. McShea2, Mark D. Uhen, The Anatomoical Record, 20 OCT 2004
  9. ^ Marino, Lori (2004). "Cetacean Brain Evolution: Multiplication Generates Complexity" (PDF). International Society for Comparative Psychology (17): 1–16. Archived from the original (PDF) on 2012-11-20. Retrieved 2010-08-29.
  10. S2CID 14339772
    .
  11. ^ "Thinking about Brain Size". Archived from the original on 2012-05-09. Retrieved 2007-02-09.
  12. ^ .
  13. ^ "Dolphins Behaviour". Dolphins and Whales Window. Archived from the original on 2015-03-17. Retrieved 2013-03-02.
  14. ^ "Elephants Brain" (PDF). Elsevier. Archived from the original (PDF) on May 9, 2008. Retrieved 2007-10-31.
  15. ^ Coghlan, A. (27 November 2006). "Whales boast the brain cells that 'make us human'". New Scientist. Archived from the original on 16 April 2008.
  16. S2CID 15460266
    .
  17. .
  18. .
  19. .: 124 
  20. .
  21. ^ Roth, Gerhard; Maxim I. Stamenov; Vittorio Gallese. "Is the human brain unique?". Mirror Neurons and the Evolution of Brain and Language. John Benjamins Publishing. pp. 63–76.
  22. JSTOR 92257
    .
  23. . Retrieved 19 March 2020.
  24. .
  25. ^ "An Ocean of Intelligence". Save Our Seas Magazine. 2019-07-02. Retrieved 2023-12-12.
  26. ^ Gary West; Darryl Heard; Nigel Caulkett (2007). Zoo Animal & Wildlife Immobilization and Anesthesia (PDF). Blackwell Publishing. pp. 485–486. Retrieved 2017-09-18.[permanent dead link]
  27. S2CID 41989236
    .
  28. OCLC 1125007476.{{cite book}}: CS1 maint: others (link
    )
  29. .
  30. ^ .
  31. ^ .
  32. .
  33. ^ "Smarter than the average chimp". APA online. 2004. Retrieved 2008-03-28.
  34. ^ "Marine mammals master math". APA online. 2005. Retrieved 2008-03-28.
  35. ^ Jennifer Viegas (2011). "Elephants smart as chimps, dolphins". ABC Science. Retrieved 2011-03-08.
  36. ^ "What Makes Dolphins So Smart?". The Ultimate Guide: Dolphins. 1999. Archived from the original on May 14, 2008. Retrieved 2007-10-30.
  37. ^ Macphail, E. M. "Brain and Intelligence in Vertebrates". (Oxford science publications) Oxford University Press, 1982, 433 pp.
  38. ^ "Do Dolphins Eavesdrop on the Echolocation Signals of Conspecifics?" (PDF). eScholarship.
  39. .
  40. .
  41. ^ .
  42. ^ "Research". Center for Whale Research. Retrieved 17 December 2023.
  43. ^ "Bay dolphins have Welsh dialect". BBC News. 18 May 2007.
  44. ]
  45. .
  46. ^ "The physics of bubble rings and other diver's exhausts". Archived from the original on 2006-10-06. Retrieved 2006-10-24.
  47. ^ "Bubble rings: Videos and Stills". Archived from the original on 2006-10-11. Retrieved 2006-10-24.
  48. ^ "NZ dolphin rescues beached whales". BBC News. 2008-03-12. Retrieved 2011-08-21.
  49. ^ Sieczkowski, Cavan (23 January 2013). "Divers Rescue Dolphin After It 'Asks' For Help". Huffington Post. Retrieved 2021-01-01.
  50. ^ a b c National Geographic Television & Film, Inc. (2007). WLIW broadcast of Wild Chronicles, Episode #228. Interview with Karen Pryor, with narration by show host Boyd Matson. Viewed May 30, 2007.
  51. ^
    Guardian Unlimited
    . Retrieved 2006-10-24.
  52. .
  53. .
  54. ^ Communication and behavior of whales, R Payne. 1983. Westview Press.
  55. ^
    PMID 34532160
    .
  56. .
  57. .
  58. ^ Marcoux, M. (2011). "1". Narwhal communication and grouping behaviour: a case study in social cetacean research and monitoring (PhD). Montreal: McGill University.
  59. .
  60. ^ "Dolphins 'have their own names'". BBC News. 8 May 2006. Retrieved 2006-10-24.
  61. PMID 23427174
    .
  62. .
  63. ^ Bruck, Jason N. (2013), "Decades-long social memory in bottlenose dolphins", Proceedings of the Royal Society B: Biological Sciences. Vol. 280, article 20131726.
  64. ^ "Dolphins Have Longest Memories in Animal Kingdom". News.nationalgeographic.com. 2013-08-06. Archived from the original on August 10, 2013. Retrieved 2018-08-14.
  65. ^ "Elephant Self-Awareness Mirrors Humans". live Science. 30 October 2006.
  66. ^ "Article in Scientific American". Scientificamerican.com. 2010-11-29. Retrieved 2018-08-14.
  67. ^ Marten, Ken and Psarakos, Suchi "Using Self-View Television to Distinguish between Self-Examination and Social Behavior in the Bottlenose Dolphin (Tursiops truncatus)" (Consciousness and Cognition, Volume 4, Number 2, June 1995)
  68. PMID 11331768
    .
  69. ^ Gallup Jr, Gordon G., and James R. Anderson. "Self-recognition in animals: Where do we stand 50 years later? Lessons from cleaner wrasse and other species." Psychology of Consciousness: Theory, Research, and Practice (2019).

Further reading

  • Dolphin Communication and Cognition: Past, Present, and Future, edited by Denise L. Herzing and Christine M. Johnson, 2015, MIT Press
  • Janet Mann (2017). Deep Thinkers: Inside the Minds of Whales, Dolphins, and Porpoises. University of Chicago Press. .

External links

  1. Brain facts and figures.
  2. Neuroanatomy of the Common Dolphin (Delphinus delphis) as Revealed by Magnetic Resonance Imaging (MRI).
  3. "The Dolphin Brain Atlas" – A collection of stained brain sections and MRI images.