Cetacea
Cetacea Temporal range: Eocene – Present
Early | |
---|---|
Scientific classification ![]() | |
Domain: | Eukaryota |
Kingdom: | Animalia |
Phylum: | Chordata |
Class: | Mammalia |
Order: | Artiodactyla |
Suborder: | Whippomorpha |
Clade: | Cetaceamorpha
|
Infraorder: | Cetacea Brisson, 1762 |
Subgroups | |
(see text for families) | |
Diversity | |
Around 94 species |
Cetacea (
While the majority of cetaceans live in marine environments, a small number reside solely in brackish water or fresh water. Having a cosmopolitan distribution, they can be found in some rivers and all of Earth's oceans, and many species inhabit vast ranges where they migrate with the changing of the seasons.
Cetaceans are famous for their high intelligence, complex social behaviour, and the enormous size of some of the group's members. For example, the blue whale reaches a maximum confirmed length of 29.9 meters (98 feet) and a weight of 173 tonnes (190 short tons), making it the largest animal ever known to have existed.[5][6][7]
There are approximately 89
Cetaceans have been extensively hunted for their meat, blubber and oil by commercial operations. Although the International Whaling Commission has agreed on putting a halt to commercial whaling, whale hunting is still going on, either under IWC quotas to assist the subsistence of Arctic native people or in the name of scientific research, although a large spectrum of non-lethal methods are now available to study marine mammals in the wild.[9] Cetaceans also face severe environmental hazards from underwater noise pollution, entanglement in abandoned ropes and nets, collisions with ships, plastic and heavy metals build-up, to accelerating climate change,[10][11] but how much they are affected varies widely from species to species, from minimally in the case of the southern bottlenose whale to the baiji (Chinese river dolphin) which is considered to be functionally extinct due to human activity.[12]
Baleen whales and toothed whales
This section needs additional citations for verification. (November 2019) |
The two parvorders, baleen whales (Mysticeti) and toothed whales (Odontoceti), are thought to have diverged around thirty-four million years ago.[13]
Baleen whales have bristles made of
The parvorder of Odontocetes – the toothed whales – include sperm whales, beaked whales, orcas, dolphins and porpoises. Generally their teeth have evolved to catch fish, squid or other
Toothed whales have well-developed senses – their eyesight and hearing are adapted for both air and water, and they have advanced sonar capabilities using their melon. Their hearing is so well-adapted for both air and water that some blind specimens can survive. Some species, such as sperm whales, are well adapted for diving to great depths. Several species of toothed whales show sexual dimorphism, in which the males differ from the females, usually for purposes of sexual display or aggression.[17]
Anatomy

Cetacean bodies are generally similar to those of fish, which can be attributed to their lifestyle and the habitat conditions. Their body is well-adapted to their habitat, although they share essential characteristics with other higher mammals (Eutheria).[18]
They have a streamlined shape, and their forelimbs are flippers. Almost all have a dorsal fin on their backs, but this can take on many forms, depending on the species. A few species, such as the beluga whale, lack them. Both the flipper and the fin are for stabilization and steering in the water.[citation needed]
The male genitals and the mammary glands of females are sunken into the body.[19][20] The male genitals are attached to a vestigial pelvis.[21]
The body is wrapped in a thick layer of fat, known as blubber. This provides thermal insulation and gives cetaceans their smooth, streamlined body shape. In larger species, it can reach a thickness up to one-half meter (1.6 feet).[citation needed]
Sexual dimorphism evolved in many toothed whales. Sperm whales, narwhals, many members of the beaked whale family, several species of the porpoise family, orcas, pilot whales, eastern spinner dolphins and northern right whale dolphins show this characteristic.[22] Males in these species developed external features absent in females that are advantageous in combat or display. For example, male sperm whales are up to 63% percent larger than females, and many beaked whales possess tusks used in competition among males.[22][23] Hind legs are not present in cetaceans, nor are any other external body attachments such as a
Head
Whales have an elongated head, especially
The nostrils are located on top of the head above the eyes so that the rest of the body can remain submerged while surfacing for air. The back of the skull is significantly shortened and deformed. By shifting the nostrils to the top of the head, the nasal passages extend perpendicularly through the skull.[26] The teeth or baleen in the upper jaw sit exclusively on the maxilla. The braincase is concentrated through the nasal passage to the front and is correspondingly higher, with individual cranial bones that overlap.[citation needed]
In toothed whales, connective tissue exists in the
River dolphins, unlike most other cetaceans, can turn their head 90°. Most other cetaceans have fused neck vertebrae and are unable to turn their head at all.[citation needed]
The baleen of baleen whales consists of long, fibrous strands of keratin. Located in place of the teeth, it has the appearance of a huge fringe and is used to sieve the water for plankton and krill.[28]
Brain

Sperm whales have the largest brain mass of any animal on Earth, averaging 8,000 cm3 (490 in3) and 7.8 kg (17 lb) in mature males.
In cetaceans, evolution in the water has caused changes to the head that have modified brain shape such that the brain folds around the insula and expands more laterally than in terrestrial mammals. As a result, the cetacean prefrontal cortex (compared to that in humans) rather than frontal is laterally positioned.[31]
The
Skeleton

The cetacean skeleton is largely made up of
The number of
The front limbs are paddle-shaped with shortened arms and elongated finger bones, to support movement. They are connected by cartilage. The second and third fingers display a proliferation of the finger members, a so-called hyperphalangy. The shoulder joint is the only functional joint in all cetaceans except for the
Fluke

Cetaceans have a
Physiology
Circulation
Cetaceans have powerful hearts. Blood oxygen is distributed effectively throughout the body. They are warm-blooded, i.e., they hold a nearly constant body temperature.[38]
Respiration
Cetaceans have lungs, meaning they breathe air. An individual can last without a breath from a few minutes to over two hours depending on the species. Cetacea are deliberate breathers who must be awake to inhale and exhale. When stale air, warmed from the lungs, is exhaled, it condenses as it meets colder external air. As with a terrestrial mammal breathing out on a cold day, a small cloud of 'steam' appears. This is called the 'spout' and varies across species in shape, angle and height. Species can be identified at a distance using this characteristic.
The structure of the
Abdominal organs
The stomach consists of three chambers. The first region is formed by a loose gland and a muscular forestomach (missing in beaked whales); this is followed by the main stomach and the
The kidneys are long and flattened. The salt concentration in cetacean blood is lower than that in seawater, requiring kidneys to excrete salt. This allows the animals to drink seawater.
Senses
Vision
Cetacean eyes are set on the sides rather than the front of the head. This means only species with pointed 'beaks' (such as dolphins) have good binocular vision forward and downward. Tear glands secrete greasy tears, which protect the eyes from the salt in the water. The lens is almost spherical, which is most efficient at focusing the minimal light that reaches deep water.[citation needed][clarification needed]
Chemical senses
Odontocetes have little to no ability to taste or smell, while mysticetes are believed to have some ability to smell because of their reduced, but functional olfactory system.[46]
Electroreception
At least one species, the
Ears
Cetaceans are known to possess excellent hearing.[48]
The external ear has lost the
A bony structure of the middle and inner ear, the
Cetaceans use sound to communicate, using groans, moans, whistles, clicks or the 'singing' of the humpback whale.[47]
Echolocation
While differences in ear structure associated with echolocating abilities are found amongst Cetacea, cranial asymmetry has also been found to be a factor in the ability to produce sounds used in echolocation. Mysticeti, who don't have the ability to echolocate, possess general symmetry of the skull and facial region, while Odontoceti display a nasofacial asymmetry that is linked to their echolocating abilities.[53] Differences in the level of asymmetry also seem to correlate with differences in the types of sounds produced.[53]
Mysticeti have exceptionally thin, wide basilar membranes in their
Chromosomes
The initial
Ecology
Range and habitat
Cetaceans are found in many aquatic habitats. While many marine species, such as the blue whale, the humpback whale and the orca, have a distribution area that includes nearly the entire ocean, some species occur only locally or in broken populations. These include the vaquita, which inhabits a small part of the Gulf of California and Hector's dolphin, which lives in some coastal waters in New Zealand. Most river dolphin species live exclusively in fresh water.[56]
Many species inhabit specific latitudes, often in tropical or subtropical waters, such as
Cosmopolitan species may be found in the Pacific, Atlantic and Indian Oceans. However, northern and southern populations become genetically separated over time. In some species, this separation leads eventually to a divergence of the species, such as produced the southern right whale, North Pacific right whale and North Atlantic right whale.[57] Migratory species' reproductive sites often lie in the tropics and their feeding grounds in polar regions.
Thirty-two species are found in European waters, including twenty-five toothed and seven baleen species.[citation needed]
Whale migration
Many species of whales migrate on a latitudinal basis to move between seasonal habitats. For example, the gray whale migrates 10,000 miles (16,000 km) round trip. The journey begins at winter birthing grounds in warm lagoons along Baja California, and traverses 5,000–7,000 miles (8,000–11,300 km) of coastline to summer feeding grounds in the Bering, Chuckchi and Beaufort seas off the coast of Alaska.[58]
Behaviour
Sleep
Conscious breathing cetaceans
A 2008 study found that sperm whales sleep in vertical postures just under the surface in passive shallow 'drift-dives', generally during the day, during which whales do not respond to passing vessels unless they are in contact, leading to the suggestion that whales possibly sleep during such dives.[60]
Diving
While diving, the animals reduce their oxygen consumption by lowering the heart activity and blood circulation; individual organs receive no oxygen during this time. Some
Social relations
Most cetaceans are social animals, although a few species live in pairs or are solitary. A group, known as a pod, usually consists of ten to fifty animals, but on occasion, such as mass availability of food or during mating season, groups may encompass more than one thousand individuals. Inter-species socialization can occur.[63]
Pods have a fixed hierarchy, with the priority positions determined by biting, pushing or ramming. The behavior in the group is aggressive only in situations of stress such as lack of food, but usually it is peaceful. Contact swimming, mutual fondling and nudging are common. The playful behavior of the animals, which is manifested in air jumps, somersaults, surfing, or fin hitting, occurs more often than not in smaller cetaceans, such as dolphins and porpoises.[63]
Whale song
Males in some baleen species communicate via whale song, sequences of high pitched sounds. These "songs" can be heard for hundreds of kilometers. Each population generally shares a distinct song, which evolves over time. Sometimes, an individual can be identified by its distinctive vocals, such as the 52-hertz whale that sings at a higher frequency than other whales. Some individuals are capable of generating over 600 distinct sounds.[63] In baleen species such as humpbacks, blues and fins, male-specific song is believed to be used to attract and display fitness to females.[64]
Hunting
Pod groups also hunt, often with other species. Many species of dolphins accompany large tunas on hunting expeditions, following large schools of fish. The orca hunts in pods and targets belugas and even larger whales. Humpback whales, among others, form in collaboration
Intelligence

Cetacea are known to teach, learn, cooperate, scheme and grieve.[65]
Smaller cetaceans, such as dolphins and porpoises, engage in complex play behavior, including such things as producing stable underwater toroidal air-core vortex rings or "bubble rings". The two main methods of bubble ring production are rapid puffing of air into the water and allowing it to rise to the surface, forming a ring, or swimming repeatedly in a circle and then stopping to inject air into the helical vortex currents thus formed. They also appear to enjoy biting the vortex rings, so that they burst into many separate bubbles and then rise quickly to the surface. Whales produce bubble nets to aid in herding prey.[66]

Larger whales are also thought to engage in play. The southern right whale elevates its tail fluke above the water, remaining in the same position for a considerable time. This is known as "sailing". It appears to be a form of play and is most commonly seen off the coast of Argentina and South Africa.[67] Humpback whales also display this behaviour.[68]
Self-awareness appears to be a sign of abstract thinking. Self-awareness, although not well-defined, is believed to be a precursor to more advanced processes such as metacognitive reasoning (thinking about thinking) that humans exploit. Dolphins appear to possess self-awareness.[69] The most widely used test for self-awareness in animals is the mirror test, in which a temporary dye is placed on an animal's body and the animal is then presented with a mirror. Researchers then explore whether the animal shows signs of self-recognition.[70]
Critics claim that the results of these tests are susceptible to the
In 1995, Marten and Psarakos used video to test dolphin self-awareness.[71] They showed dolphins real-time footage of themselves, recorded footage and another dolphin. They concluded that their evidence suggested self-awareness rather than social behavior. While this particular study has not been replicated, dolphins later "passed" the mirror test.[70]
Decision-making
Collective decisions are an important part of life as a cetacean for the many species that spend time in groups (whether these be temporary such as the fission-fusion dynamics of many smaller dolphin species or long-term stable associations as are seen in killer whale and sperm whale matrilines).[72] Little is known about how these decisions work, though studies have found evidence messy consensus decisions in groups of sperm whales and leadership in other species like bottlenose dolphins and killer whales.[citation needed]
Life history
Reproduction and brooding
Most cetaceans sexually mature at seven to 10 years. An exception to this is the La Plata dolphin, which is sexually mature at two years, but lives only to about 20. The sperm whale reaches sexual maturity within about 20 years and has a lifespan between 50 and 100 years.[63]
For most species, reproduction is seasonal. Ovulation coincides with male fertility. This cycle is usually coupled with seasonal movements that can be observed in many species. Most toothed whales have no fixed bonds. In many species, females choose several partners during a season. Baleen whales are largely monogamous within each reproductive period.[citation needed]
Gestation ranges from 9 to 16 months. Duration is not necessarily a function of size. Porpoises and blue whales gestate for about 11 months. As with all mammals other than marsupials and monotremes, the embryo is fed by the placenta, an organ that draws nutrients from the mother's bloodstream. Mammals without placentas either lay minuscule eggs (monotremes) or bear minuscule offspring (marsupials).[citation needed]
Cetaceans usually bear one calf. In the case of twins, one usually dies, because the mother cannot produce sufficient milk for both. In modern cetaceans, the fetus is usually positioned for a tail-first delivery. Contrary to popular belief, this is not to minimize the risk of drowning during delivery. More likely it has to do with the mechanics of birthing and the shape of the fetus.
Suckling
Like other placental mammals, cetaceans give birth to well-developed calves and nurse them with milk from their
In many small cetaceans, suckling lasts for about four months. In large species, it lasts for over a year and involves a strong bond between mother and offspring.[citation needed]
In several species of both whales and dolphins, alloparenting has been observed.[74][75]
This reproductive strategy provides a few offspring that have a high survival rate.[citation needed]
Lifespan
Among cetaceans, whales are distinguished by an unusual longevity compared to other higher mammals. Some species, such as the
Death
Upon death, whale carcasses fall to the deep ocean and provide a substantial habitat for marine life. Evidence of whale falls in present-day and fossil records shows that deep-sea whale falls support a rich assemblage of creatures, with a global diversity of 407 species, comparable to other
Deterioration of whale carcasses happens through three stages. Initially, organisms such as
Disease
Evolution
Fossil history
Origins
The direct ancestors of today's cetaceans are probably found within the
Transition from land to sea

The fossil record traces the gradual transition from terrestrial to aquatic life. The regression of the hind limbs allowed greater flexibility of the spine. This made it possible for whales to move around with the vertical tail hitting the water. The front legs transformed into flippers, costing them their mobility on land.[82]
One of the oldest members of ancient cetaceans (Archaeoceti) is Pakicetus from the Middle Eocene of Pakistan. This is an animal the size of a wolf, whose skeleton is known only partially. It had functioning legs and lived near the shore. This suggests the animal could still move on land. The long snout had carnivorous dentition.[80]
The transition from land to sea dates to about 49 million years ago, with the Ambulocetus ("running whale"), also discovered in Pakistan. It was up to 3 m (9.8 ft) long. The limbs of this archaeocete were leg-like, but it was already fully aquatic, indicating that a switch to a lifestyle independent from land happened extraordinarily quickly.[83] The snout was elongated with overhead nostrils and eyes. The tail was strong and supported movement through water. Ambulocetus probably lived in mangroves in brackish water and fed in the riparian zone as a predator of fish and other vertebrates.[84]
Dating from about 45 million years ago are species such as
Marine animals
Since the late Eocene, about 40 million years ago, cetaceans populated the subtropical oceans and no longer emerged on land. An example is the 18 metre long
External phylogeny
Molecular and morphological evidence suggests that
Artiodactyla
|
| ||||||||||||||||||||||||||||||
Internal phylogeny
Within Cetacea, the two
Relationship of extinct and extant cetaceans[94]: | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
† Extinct taxa
|
The terms whale and dolphin are informal:
- Mysticeti:
- Balaenopteridae (rorquals), Eschrichtiidae(grey whales)
- Odontoceti:
- Ziphiidae(beaked whales)
- Delphinidae (oceanic dolphins), Platanistidae (South Asian river dolphins), Lipotidae (old world river dolphins) Iniidae (new world river dolphins), and Pontoporiidae (La Plata dolphins)
- Phocoenidae
The term 'great whales' covers those currently regulated by the International Whaling Commission:[95] the Odontoceti families Physeteridae (sperm whales), Ziphiidae (beaked whales), and Kogiidae (pygmy and dwarf sperm whales); and Mysticeti families Balaenidae (right and bowhead whales), Cetotheriidae (pygmy right whales), Eschrichtiidae (grey whales), as well as part of the family Balaenopteridae (minke, Bryde's, sei, blue and fin; not Eden's and Omura's whales).[96]
Threats
The primary threats to cetaceans come from people, both directly from whaling or drive hunting and indirect threats from fishing and pollution.[97]
Whaling
Whaling is the practice of hunting whales, mainly baleen and sperm whales. This activity has gone on since the Stone Age.[98]
In the
In the 18th and 19th centuries, baleen whales especially were hunted for their baleen, which was used as a replacement for wood, or in products requiring strength and flexibility such as corsets and crinoline skirts. In addition, the spermaceti found in the sperm whale was used as a machine lubricant and the ambergris as a material for pharmaceutical and perfume industries. In the second half of the 19th century, the explosive harpoon was invented, leading to a massive increase in the catch size.[citation needed]
Large ships were used as "mother" ships for the whale handlers. In the first half of the 20th century, whales were of great importance as a supplier of raw materials. Whales were intensively hunted during this time; in the 1930s, 30,000 whales were killed. This increased to over 40,000 animals per year up to the 1960s, when stocks of large baleen whales collapsed.[citation needed]
Most hunted whales are now threatened, with some great whale populations exploited to the brink of extinction. Atlantic and Korean
The first efforts to protect whales came in 1931. Some particularly endangered species, such as the humpback whale (which then numbered about 100 animals),[99] were placed under international protection and the first protected areas were established. In 1946, the International Whaling Commission (IWC) was established, to monitor and secure whale stocks. Whaling of 14 large species for commercial purposes was prohibited worldwide by this organization from 1985 to 2005, though some countries do not honor the prohibition.[citation needed]

The stocks of species such as humpback and blue whales have recovered, though they are still threatened. The United States Congress passed the
Aboriginal whaling is still permitted. About 1,200 pilot whales were taken in the Faroe Islands in 2017,[100] and about 900 narwhals and 800 belugas per year are taken in Alaska, Canada, Greenland, and Siberia. About 150 minke are taken in Greenland per year, 120 gray whales in Siberia and 50 bowheads in Alaska, as aboriginal whaling, besides the 600 minke taken commercially by Norway, 300 minke and 100 sei taken by Japan and up to 100 fin whales taken by Iceland.[101] Iceland and Norway do not recognize the ban and operate commercial whaling. Norway and Japan are committed to ending the ban.[citation needed]
Dolphins and other smaller cetaceans are sometimes hunted in an activity known as dolphin drive hunting. This is accomplished by driving a pod together with boats, usually into a bay or onto a beach. Their escape is prevented by closing off the route to the ocean with other boats or nets. Dolphins are hunted this way in several places around the world, including the Solomon Islands, the Faroe Islands, Peru and Japan (the most well-known practitioner). Dolphins are mostly hunted for their meat, though some end up in dolphinaria. Despite the controversy thousands of dolphins are caught in drive hunts each year.[citation needed]
Fishing

Dolphin pods often reside near large tuna shoals. This is known to fishermen, who look for dolphins to catch tuna. Dolphins are much easier to spot from a distance than tuna, since they regularly breathe. The fishermen pull their nets hundreds of meters wide in a circle around the dolphin groups, in the expectation that they will net a tuna shoal. When the nets are pulled together, the dolphins become entangled under water and drown. Line fisheries in larger rivers are threats to
A greater threat than by-catch for small cetaceans is targeted hunting. In Southeast Asia, they are sold as fish-replacement to locals, since the region's edible fish promise higher revenues from exports. In the Mediterranean, small cetaceans are targeted to ease pressure on edible fish.[97]
Strandings
A stranding is when a cetacean leaves the water to lie on a beach. In some cases, groups of whales strand together. The best known are mass strandings of pilot whales and sperm whales. Stranded cetaceans usually die, because their as much as 90 metric tons (99 short tons) body weight compresses their lungs or breaks their ribs. Smaller whales can die of heatstroke because of their thermal insulation.[citation needed]

The causes are not clear. Possible reasons for mass beachings are:[97]
- toxic contaminants
- debilitating parasites (in the respiratory tract, brain or middle ear)
- infections (bacterial or viral)
- flight from predators (including humans)
- social bonds within a group, so that the pod follows a stranded animal
- disturbance of their magnetic senses by natural anomalies in the Earth's magnetic field
- injuries
- noise pollution by shipping traffic, seismic surveys and military sonar experiments
Since 2000, whale strandings frequently occurred following military sonar testing. In December 2001, the US Navy admitted partial responsibility for the beaching and the deaths of several marine mammals in March 2000. The coauthor of the interim report stated that animals killed by active sonar of some Navy ships were injured. Generally, underwater noise, which is still on the increase, is increasingly tied to strandings; because it impairs communication and sense of direction.[102]
Climate change influences the major wind systems and ocean currents, which also lead to cetacean strandings. Researchers studying strandings on the Tasmanian coast from 1920 to 2002 found that greater strandings occurred at certain time intervals. Years with increased strandings were associated with severe storms, which initiated cold water flows close to the coast. In nutrient-rich, cold water, cetaceans expect large prey animals, so they follow the cold water currents into shallower waters, where the risk is higher for strandings. Whales and dolphins who live in pods may accompany sick or debilitated pod members into shallow water, stranding them at low tide.[103]
Environmental hazards
Worldwide, use of active sonar has been linked to about 50 marine mammal strandings between 1996 and 2006. In all of these occurrences, there were other contributing factors, such as unusual (steep and complex) underwater geography, limited egress routes, and a specific species of marine mammal—beaked whales—that are suspected to be more sensitive to sound than other marine mammals.
Heavy metals, residues of many plant and insect venoms and plastic waste
Damage to the ozone layer reduces plankton reproduction because of its resulting radiation. This shrinks the food supply for many marine animals, but the filter-feeding baleen whales are most impacted. Even the Nekton is, in addition to intensive exploitation, damaged by the radiation.[97]
Food supplies are also reduced long-term by ocean acidification due to increased absorption of increased atmospheric carbon dioxide. The CO2 reacts with water to form carbonic acid, which reduces the construction of the calcium carbonate skeletons of food supplies for zooplankton that baleen whales depend on.[97]
The military and resource extraction industries operate strong
Relationship to humans
Research history

In Aristotle's time, the fourth century BCE, whales were regarded as fish due to their superficial similarity. Aristotle, however, observed many physiological and anatomical similarities with the terrestrial vertebrates, such as blood (circulation), lungs, uterus and fin anatomy.[106] His detailed descriptions were assimilated by the Romans, but mixed with a more accurate knowledge of the dolphins, as mentioned by Pliny the Elder in his Natural history. In the art of this and subsequent periods, dolphins are portrayed with a high-arched head (typical of porpoises) and a long snout. The harbour porpoise was one of the most accessible species for early cetologists; because it could be seen close to land, inhabiting shallow coastal areas of Europe. Much of the findings that apply to all cetaceans were first discovered in porpoises.[107] One of the first anatomical descriptions of the airways of a harbor porpoise dates from 1671 by John Ray. It nevertheless referred to the porpoise as a fish.[108][109]
The tube in the head, through which this kind fish takes its breath and spitting water, located in front of the brain and ends outwardly in a simple hole, but inside it is divided by a downward bony septum, as if it were two nostrils; but underneath it opens up again in the mouth in a void.
— John Ray, 1671, the earliest description of cetacean airways
In the 10th edition of Systema Naturae (1758), Swedish biologist and taxonomist Carl Linnaeus asserted that cetaceans were mammals and not fish. His groundbreaking binomial system formed the basis of modern whale classification.[citation needed]
Culture
This section needs additional citations for verification. (August 2024) |


Middle Ages to the 19th century


Baleen was used to make vessel components such as the bottom of a bucket in the Scottish National Museum. The Norsemen crafted ornamented plates from baleen.[citation needed] In the Canadian Arctic (east coast) in Punuk and Thule culture (1000–1600 C.E.),[112] baleen was used to construct houses in place of wood as roof support for winter houses.[113]
Modern culture

In the 20th century, perceptions of cetaceans changed. They transformed from monsters into creatures of wonder, as science revealed them to be intelligent and peaceful animals. Hunting was replaced by whale and dolphin tourism. This change is reflected in films and novels. For example, the protagonist of the series Flipper was a bottle-nose dolphin. The TV series SeaQuest DSV (1993–1996), the movies Free Willy and Star Trek IV: The Voyage Home, and the book series The Hitchhiker's Guide to the Galaxy by Douglas Adams are examples.[114]
The study of whale songs also produced a popular album, Songs of the Humpback Whale.[115]
Captivity
Whales and dolphins have been kept in captivity for use in education, research and entertainment since the 19th century.[116]
Belugas
As of 2006, 30 belugas lived in Canada and 28 in the United States. 42 deaths in captivity had been reported.
Orcas

The orca's
Organizations such as World Animal Protection and the Whale and Dolphin Conservation campaign against the practice of keeping them in captivity.[citation needed]
In captivity, they often develop pathologies, such as the dorsal fin collapse seen in 60–90% of captive males. Captives have reduced life expectancy, on average only living into their 20s, although some live longer, including several over 30 years old and two, Corky II and Lolita, in their mid-40s. In the wild, females who survive infancy live 46 years on average and up to 70–80 years. Wild males who survive infancy live 31 years on average and can reach 50–60 years.[122]
Captivity usually bears little resemblance to wild habitat and captive whales' social groups are foreign to those found in the wild. Critics claim captive life is stressful due to these factors and the requirement to perform circus tricks that are not part of wild orca behavior. Wild orca may travel up to 160 kilometres (100 mi) in a day and critics say the animals are too big and intelligent to be suitable for captivity.
Each country has its own tank requirements; in the US, the minimum enclosure size is set by the Code of Federal Regulations, 9 CFR E § 3.104, under the Specifications for the Humane Handling, Care, Treatment and Transportation of Marine Mammals.[126]
Aggression among captive orcas is common. They attack each other and their trainers as well. In 2013, SeaWorld's treatment of orcas in captivity was the basis of the movie Blackfish, which documents the history of Tilikum, an orca at SeaWorld Orlando, who had been involved in the deaths of three people.[127] The film led to proposals by some lawmakers to ban captivity of cetaceans, and led SeaWorld to announce in 2016 that it would phase out its orca program.[128]
Others

Dolphins and porpoises are kept in captivity.
In repeated attempts in the 1960s and 1970s,
References
- S2CID 86326007.
- OL 20591860M.
- ^ M. Raneft, D.; Eaker, H.; W. Davis, R. (2001). "A guide to the pronunciation and meaning of cetacean taxonomic names" (PDF). Aquatic Mammals. 27 (2): 185. Archived (PDF) from the original on 2016-03-27.
- S2CID 25036870.
- ISBN 978-0-85112-235-9
- ^ Davies, Ella (2016-04-20). "The longest animal alive may be one you never thought of". BBC Earth. Retrieved 2018-02-14.
- ^ "Largest mammal". Guinness World Records.
- ^ Perrin, W.F. (2020). "World Cetacea Database". marinespecies.org. Retrieved 2020-12-12.
- ^ Notarbartolo di Sciara, G.; Briand, F. (2004). "Investigating the Roles of Cetaceans in Marine Ecosystems - An overview". CIESM Workshop Monographs. 25: 1–15.[1]
- ISBN 978-0-646-47224-9. Archived from the original(PDF) on 8 September 2015. Retrieved 5 September 2015.
- .
- ^ Lovgren, Stefan (December 14, 2006). "China's Rare River Dolphin Now Extinct, Experts Announce". National Geographic News. Washington, D.C.: National Geographic Society. Archived from the original on December 18, 2006. Retrieved 2015-10-18.
- S2CID 16270218.
- ISBN 978-0-12-804327-1, retrieved 2025-02-09
- ISSN 0362-4331. Retrieved 2025-02-09.
- ^ "BBC Two - Expedition Killer Whale - Capturing the secret lives of pack ice killer whales". BBC. Retrieved 2025-02-09.
- ISBN 978-0-12-373553-9, retrieved 2025-02-09
- ^ Groves; Colin; Grubb, Peter (2011). "Ungulate taxonomy". JHU Press. [page needed]
- ISBN 978-1-4899-0159-0.
- ISBN 978-1-4398-4257-7.
- ISBN 978-0-935848-47-2.
- ^ S2CID 18292677.
- S2CID 205729032.
- ^ "How ancient whales lost their legs, got sleek and conquered the oceans". EurekAlert. University of Florida. 2006-05-22. Archived from the original on 2020-12-02. Retrieved 2016-03-20.
- PMID 25440939.
- ISBN 978-3-540-64996-0. [page needed]
- PMID 8622183.
- ^ "What is baleen?". Whale & Dolphin Conservation USA. Retrieved 2025-01-13.
- ^ "Sperm Whales brain size". NOAA Fisheries – Office of Protected Resources. Retrieved 9 August 2015.
- ^ Fields, R. Douglas. "Are whales smarter than we are?". Scientific American. Retrieved 9 August 2015.
- PMID 37660322.
- ^ Moore, Jim. "Allometry". University of California San Diego. Retrieved 9 August 2015.
- ISBN 978-3-319-41324-2.
- S2CID 7745280.
- S2CID 14850316.
- S2CID 15460266.
- ^ "Why do whale and dolphin tails go up and down?". Whale & Dolphin Conservation USA. Retrieved 2021-12-23.
- ^ "Whales, dolphins and porpoises". Department of Climate Change, Energy, the Environment and Water. Australian Government Department of Climate Change, Energy, the Environment and Water. Retrieved 19 October 2024.
- ISBN 978-0-521-44418-7. Retrieved 5 September 2015.
- JSTOR 30155836.
- ISBN 978-1-108-07960-0.
- ISBN 978-0-12-804381-3. Archivedfrom the original on 29 June 2023. Retrieved 19 October 2020.
- ^ ISBN 9780429063626.
- (PDF) from the original on 22 November 2021.
- ISBN 978-1-4899-0161-3.
- S2CID 25260840.
- ^ a b Morell, Virginia (July 2011). "Guiana Dolphins Can Use Electric Signals to Locate Prey". Science. American Association for the Advancement of Science (AAAS). Archived from the original on 2013-05-30.
- ^ Mead, James. "Cetacea". Britannica School High. Encyclopædia Britannica, Inc. Retrieved 3 June 2019.
- ISBN 978-0-12-551340-1.
- ^ Ketten, Darlene R. (1992). "The Marine Mammal Ear: Specializations for Aquatic Audition and Echolocation". In Webster, Douglas B.; Fay, Richard R.; Popper, Arthur N. (eds.). The Evolutionary Biology of Hearing. Springer. pp. 717–750. Pages 725–727 used here.
- ISBN 978-0-12-373553-9.
- doi:10.13140/RG.2.1.3764.9765.)
{{cite journal}}
: CS1 maint: multiple names: authors list (link - ^ PMID 32646447.
- doi:10.1080/09524622.1997.9753356. Archived from the original(PDF) on 2014-08-01. Retrieved 2013-12-21.
- PMID 4137586.
- PMID 11027333.
- .
- ^ "Gray Whale Migration". journeynorth.org. Archived from the original on 2019-06-09. Retrieved 3 July 2021.
- S2CID 4406032.
- S2CID 10587736.
- ^ Scholander, Per Fredrik (1940). "Experimental investigations on the respiratory function in diving mammals and birds". Hvalraadets Skrifter. 22.
- PMID 15791584.
- ^ a b c d e f Janet Mann; Richard C. Connor; Peter L. Tyack; et al. (eds.). Cetacean Societies: Field Study of Dolphins and Whales. University of Chicago.
- S2CID 40334723.
- ^ Siebert, Charles (8 July 2009). "Watching Whales Watching Us". The New York Times Magazine. Retrieved 29 August 2015.
- S2CID 55168063.
- )
- ^ Staff, A. O. L. (2016-07-15). "Humpback whale 'tail-sails' as she watches her calf off the Maui coast". www.aol.com. Retrieved 2025-02-08.
- ^ "Elephant Self-Awareness Mirrors Humans". Live Science. 30 October 2006. Retrieved 29 August 2015.
- ^ a b c Derr, Mark (May 2001). "Mirror test". New York Times. Retrieved 3 August 2015.
- S2CID 44372881.
- S2CID 261141293.
- PMID 37072698.
- ISSN 1045-2249.
- ISSN 0261-3077. Retrieved 2025-02-09.
- doi:10.1139/z99-015.
- ^ ISBN 978-0-415-25462-5. Archived (PDF) from the original on 2006-08-17. Retrieved 23 August 2014.)
{{cite book}}
: CS1 maint: DOI inactive as of November 2024 (link - .
- PMID 22919595.
- ^ (PDF) from the original on 2013-12-24.
- PMID 19194487.
- ^ "The Evolution of Whales". Understanding Evolution, University of California Museum of Paleontology. Retrieved 21 January 2025.
- PMID 27396988.
- S2CID 27675176.
- ^ "First intact fossil of prehistoric whale discovered in Wadi Al-Hitan". International Union for Conservation of Nature. 9 June 2015.
- PMID 9159931.
- PMID 15677331.
- ^ "Scientists find missing link between the dolphin, whale and its closest relative, the hippo". Science News Daily. 2005-01-25. Retrieved 2011-01-08.
- ^
Beck, N.R. (2006). "A higher-level MRP supertree of placental mammals". BMC Evol Biol. 6: 93. PMID 17101039.
- ^
O'Leary, M.A.; Bloch, J.I.; Flynn, J.J.; Gaudin, T.J.; Giallombardo, A.; Giannini, N.P.; et al. (2013). "The placental mammal ancestor and the post-K-Pg radiation of placentals". S2CID 206544776.
- ^
Song, S.; Liu, L.; Edwards, S.V.; Wu, S. (2012). "Resolving conflict in eutherian mammal phylogeny using phylogenomics and the multispecies coalescent model". Proceedings of the National Academy of Sciences. 109 (37): 14942–14947. PMID 22930817.
- ^
dos Reis, M.; Inoue, J.; Hasegawa, M.; Asher, R.J.; Donoghue, P.C.J.; Yang, Z. (2012). "Phylogenomic datasets provide both precision and accuracy in estimating the timescale of placental mammal phylogeny". PMID 22628470.
- ^
Upham, N.S.; Esselstyn, J.A.; Jetz, W. (2019). "Inferring the mammal tree: Species-level sets of phylogenies for questions in ecology, evolution, and conservation". PMID 31800571. (see e.g. Fig S10)
- ^ Gatesy, John; Geisler, Jonathan H.; Chang, Joseph; Buell, Carl; Berta, Annalisa; Meredith, Robert W.; Springer, Mark S.; McGowen, Michael R. (2012). "A phylogenetic blueprint for a modern whale" (PDF). (PDF) from the original on 2013-02-27. Retrieved 4 September 2015.
- ^ "Small cetaceans". iwc.int. International Whaling Commission. Retrieved 2018-04-08.
- ^ "Lives of Whales". iwc.int. International Whaling Commission. Retrieved 2018-04-08.
- ^ ISBN 978-0-646-47224-9. Archived from the original(PDF) on 8 September 2015. Retrieved 5 September 2015.
- Britannica Online Encyclopedia. 2024-10-11. Retrieved 2024-10-28.
- ^ "A History of the International Whaling Commission (IWC)". wwf.panda.org. Retrieved 2024-08-08.
- ^ "Hagar & seyðamark". heimabeiti.fo. Archived from the original on 2014-09-24. Retrieved 2018-04-07.
- ^ "Total Catches". iwc.int. Retrieved 2018-04-07.
- S2CID 52827761.
- PMID 17148151.
- .
- S2CID 31676969.
- ^ Aristotle. "Chapter 2". The History of Animals, Book VIII. Translated by Thompson, D'Arcy Wentworth. Archived from the original on April 16, 2022. Retrieved April 16, 2022.
- ^ Conrad Gesner (6 September 2008). Historiae animalium. Archived from the original on 6 September 2008. Retrieved 4 September 2015.
- S2CID 186210473.
- ^ Susanne Prahl (2007). "Studies for the construction of epicranialen airway when porpoise (Phocoena phocoena Linnaeus, 1758)". Dissertation for the Doctoral Degree of the Department of Biology of the Faculty of Mathematics, Computer Science and Natural Sciences at the University of Hamburg: 6.
- ^ "PCAS Quarterly - Rock Art on the Channel Islands of California" (PDF).
- ^ "BBC News - Rock Art Hints at Whaling Origins". 20 April 2004.
- ^ Cunliffe, B.; Gosden, C.; Joyce, R. "The circumpolar zone". The Oxford Handbook of Archaeology.
- .
- ^ unknown. "Movie Retriever: Whales". movieretriever.com. Archived from the original on 2015-10-15.
- ^ O'Dell, Cary. ""Songs of the Humpback Whale" (1970)" (PDF). Library of Congress.
- ^ Bosworth, Amanda. "Barnum's Whales: The Showman and the Forging of Modern Animal Captivity". Historians. Retrieved 2025-02-09.
- ^ "The Whales, New York Tribune, August 9, 1861". New York Tribune. 9 August 1861. Retrieved 5 December 2011.
- ^ a b c d e "Beluga Whales in Captivity: Hunted, Poisoned, Unprotected" (PDF). Special Report on Captivity 2006. Canadian Marine Environment Protection Society. 2006. Archived from the original (PDF) on 26 December 2014. Retrieved 26 December 2014.
- ^ "Beluga (Delphinapterus leucas) Facts – Distribution – In the Zoo". World Association of Zoos and Aquariums. Archived from the original on 10 February 2012. Retrieved 5 December 2011.
- ISBN 978-0-7137-0887-5.
- ^ NMFS (2005). "Conservation Plan for Southern Resident Killer Whales (Orcinus orca)" (PDF). Seattle, U.S.: National Marine Fisheries Service (NMFS) Northwest Regional Office. pp. 43–44. Archived from the original (PDF) on June 26, 2008. Retrieved January 2, 2009.
- ^ Rose, N. A. (2011). "Killer Controversy: Why Orcas Should No Longer Be Kept in Captivity" (PDF). Humane Society International and the Humane Society of the United States. Archived (PDF) from the original on 2011-10-26. Retrieved December 21, 2014.
- ^ "Whale Attack Renews Captive Animal Debate". CBS News. March 1, 2010. Retrieved 6 September 2015.
- ISBN 978-0-415-27589-7.
- ^ "Orcas in Captivity – A look at killer whales in aquariums and parks". 23 November 2009. Archived from the original on 2 June 2007. Retrieved 6 September 2015.
- ^ "Chapter I: Space requirements". Electronic Code of Federal Regulation. 1. Retrieved 6 September 2015.
- ^ Whiting, Candace Calloway. In the Wake of Blackfish – Is it Time to Retire the Last Killer Whale Whose Capture Was Shown in the Film?", HuffPost, October 29, 2013. Retrieved October 29, 2013.
- ^ Buss, Dale (2016-03-24). "Shamu Goes Out With the Tide: SeaWorld CEO On Its Abrupt Change – And What Comes Next". Forbes. Retrieved 2016-03-26.
- ^ Klinowska, Margaret; Cooke, Justin (1991). Dolphins, Porpoises, and Whales of the World: the IUCN Red Data Book (PDF). Archived (PDF) from the original on 2015-05-09. Retrieved 6 September 2015.
- ^ J. L. Sumich; T. Goff; W. L. Perryman (2001). "Growth of two gray whale calves" (PDF). Aquatic Mammals: 231–233. Archived (PDF) from the original on 2015-10-15. Retrieved 6 September 2015.
External links
Cetacea at Wikibooks
- Encyclopædia Britannica. Vol. 5 (11th ed.). 1911. .
- "Cetaceans". Encyclopedia of Earth.
- Scottish Cetacean Research & Rescue – see page on Taxonomy
- "Dolphin and Whale News". Science Daily.
- Futuyma, Douglas J. (1998). "Cetacea Evolution". Archived from the original on 2008-05-29. Retrieved 2007-03-23.
- EIA Cetacean campaign: Reports and latest info.
- EIA in USA: reports etc.