Cyclopentadienylcobalt dicarbonyl
![]() | |
![]() | |
Identifiers | |
---|---|
3D model (
JSmol ) |
|
ChemSpider | |
ECHA InfoCard
|
100.031.933 |
EC Number |
|
PubChem CID
|
|
| |
SMILES
| |
Properties | |
CpCo(CO)2 | |
Molar mass | 180.05 g/mol |
Appearance | Dark red to black liquid |
Density | 1.35 g/cm3 |
Melting point | −22 °C (−8 °F; 251 K) |
Boiling point | 139 to 140 °C (282 to 284 °F; 412 to 413 K) (710 mmHg) 37-38.5 °C (2 mmHg) |
Insoluble | |
Hazards | |
GHS labelling: | |
![]() ![]() ![]() | |
Danger | |
H226, H301, H311, H331, H334, H341, H351, H412 | |
Flash point | 26.7 °C (80.1 °F; 299.8 K) |
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
|
Cyclopentadienylcobalt dicarbonyl is an
Preparation
CpCo(CO)2 was first reported in 1954 by Piper,
- Co2(CO)8 + 2 C5H6 → 2 C5H5Co(CO)2 + H2 + 4 CO
Alternatively, it is generated by the high pressure carbonylation of bis(cyclopentadienyl)cobalt (cobaltocene) at elevated temperature and pressures:[1]
- Co(C5H5)2 + 2 CO → C5H5Co(CO)2 + "C5H5"
The compound is identified by strong bands in its
Reactions
CpCo(CO)2 catalyzes the cyclotrimerization of alkynes.[4][5] The catalytic cycle begins with dissociation of one CO ligand forming bis(alkyne) intermediate.[6]
- CpCo(CO)2 + 2 R2C2 → CpCo(R2C2)2 + 2 CO
This reaction proceeds by formation of
- CpCo(CO)2 + PR3 → CO + CpCo(CO)(PR3)
- CpCoL(PR3) + R2C2 → L + CpCo(PR3)(R2C2) (where L = CO or PR3)
CpCo(CO)2 catalyzes the formation of pyridines from a mixture of alkynes and nitriles. Reduction of CpCo(CO)2 with sodium yields the dinuclear radical [Cp2Co2(CO)2]−, which reacts with alkyl halides to give the dialkyl complexes [Cp2Co2(CO)2R2]. Ketones are produced by carbonylation of these dialkyl complexes, regenerating CpCo(CO)2.[6]
Related compounds
The