Danuvius guggenmosi

This is a good article. Click here for more information.
Source: Wikipedia, the free encyclopedia.

Danuvius guggenmosi
Temporal range:
Ma
)
Scientific classification Edit this classification
Domain: Eukaryota
Kingdom: Animalia
Phylum: Chordata
Class: Mammalia
Order: Primates
Suborder: Haplorhini
Infraorder: Simiiformes
Family: Hominidae
Subfamily: Homininae
Tribe: Dryopithecini
Genus: Danuvius
Böhme et al., 2019
Species:
D. guggenmosi
Binomial name
Danuvius guggenmosi
Böhme et al., 2019

Danuvius guggenmosi is an extinct species of

seasonal climate. A male specimen was estimated to have weighed about 31 kg (68 lb), and two females 17 and 19 kg (37 and 42 lb). Both genus and species were described in November 2019.[1]

It is the first-discovered Late Miocene great ape with preserved

bipedalism)—whereas, among present-day great apes, humans are better adapted for the latter and the others the former.[1] Danuvius thus had a method of locomotion unlike any previously known ape called "extended limb clambering," she says, walking directly along tree branches as well as using arms for suspending itself. The last common ancestor between humans and other apes possibly had a similar method of locomotion. However, paleoanthropologist Scott Williams and others say the fragmentary remains do not differ enough from other fossil apes to provide such a clue to the origins of bipedalism.[2][3]

Taxonomy

Hammerschmiede clay pit near Pforzen, where the fossils were found

The

genus name Danuvius is a reference to the CelticRoman river-god Danuvius, a Roman name for the river Danube, which flows through the region where the remains were found. The specific name guggenmosi honours the amateur archaeologist Sigulf Guggenmos (1941–2018), who discovered the clay pit in which Danuvius was found.[1][4]

The remains of Danuvius were discovered in the Hammerschmiede clay pit near the town of Pforzen in southern Germany, magnetostratigraphically dated to 11.62 million years ago (mya) at the Serravallian-Tortonian boundary (the AstaracianVallesian boundary in ELMA),[1] and were unearthed between 2015 and 2018.[3] The holotype GPIT/MA/10000 comprises a partial skeleton with elements of the mouth, vertebrae, and long bones. There are also three paratypes: an adult left femur (GPIT/MA/10001); an adult left femur, big toe, and teeth (GPIT/MA/10003); and juvenile teeth and a middle finger bone (GPIT/MA/10002). There are 37 specimens in total.[1]

Hammerschmiede is located in Germany
Hammerschmiede
Hammerschmiede
Hammerschmiede (Bavaria, Germany), the locality where Danuvius was discovered

Its tooth anatomy is most similar to that of other

bipedalism), Danuvius may have been very similar in locomotory methods to the last common ancestor between humans and other apes, which adds weight to the hypothesis that ape suspensory activity and human bipedalism both originated from a form capable of both.[1] However, it is too early to draw more definitive conclusions because it is unclear how Danuvius is related to modern great apes, including humans.[3][5] Its discovery could also influence reconstructions of contemporary great ape limb anatomy and locomotion, which were previously by-and-large unknown.[1]

Description

Danuvius was small and probably weighed on average 23 kg (51 lb). The holotype specimen, an adult male, was calculated, based on the sizes of the

point estimate of 31 kg (68 lb). The adult female specimen GPIT/MA/10003 was calculated to be 14 to 19 kg (31 to 42 lb) with a point estimate of 17 kg (37 lb), and the adult female GPIT/MA/10001 16 to 22 kg (35 to 49 lb) with a point estimate of 19 kg (42 lb). This is bigger than siamangs but much smaller than contemporary great apes;[1] for example, male bonobos weigh 39 kg (86 lb) and females 31 kg (68 lb).[6]

Danuvius limb proportions are most similar to those of bonobos.

The sex of the individuals was determined by the size of the

roots instead of two, and the canines were more vertically oriented rather than somewhat sticking out.[1]

Danuvius is thought to have had a broad chest. It is the first recorded Miocene great ape to have had the

lumbar vertebrae. This may have caused lordosis (the normal curvature of the human spine) and moved the center of mass over the hips and legs, which implies some habitual bipedal activity.[1]

The robust finger and

big toes, unlike modern African great apes, which would have allowed it to grasp onto thinner trees. The limb proportions are most similar to those of bonobos.[1]

Orangutan suspensory behavior

Adaptations for load bearing in both the arm and leg joints to this degree is unknown in any other primate. Plantigrade

finger bones; and both lack an extendable knee. Orangutans have a clambering motion too, but their knees lack weight-bearing ability.[1]

Paleoecology

The total anatomy of the limbs suggest Danuvius was capable of a seemingly unique manner of locomotion called "extended limb clambering". Danuvius likely walked along mildly inclined tree branches with its foot directly laid onto the branch, using its strong big toes for grasping. The strong knee joint would have provided balance while walking by counteracting torques, and the strong hands would have carried out a similar function during suspension or palm-walking. Extended limb clambering emphasizes knee extension and lordosis, as well as the suspensory mechanisms seen in apes, and may be a precursor to obligate bipedalism seen in human ancestors.[1]

Paratethys Sea had dried up and the Alps had lifted, allowing the expansion of wetland habitats in the basin. The late Miocene may have been the beginning of a drying trend characterized by increased seasonality, causing deciduous forest to turn into a less dense woodland, and fruit and leaf production to occur cyclically rather than year-round.[9] The late Miocene cooling trend may have led to the replacement of more tropical flora by mid-latitude and alpine varieties, and ultimately the extinction of European great apes.[10]

See also

References

  1. ^
    S2CID 207888156
    .
  2. .
  3. ^ .
  4. ^ Ancient Languages of the Balkans, Part One. Paris: Mouton. 1976. p. 144.
  5. PMID 31745348
    .
  6. ^ Lang, K. W.; de Waal, F. (1 December 2000). "Bonobo Pan paniscus". Primate Info Net. Wisconsin Primate Research Center. Retrieved 8 November 2019.
  7. ^
    S2CID 134614174
    .
  8. ^ a b c Mayr, V. H.; Fahlbusch, V. (1975). "Eine unterpliozäne Kleinsäugerfauna aus der Oberen Süßwasser-Molasse Bayerns" [Inter-Pliocene small mammal fauna from the Upper Freshwater Molasse of Bavaria] (PDF). Mitteilungen der Bayerischen Staatssammlung für Paläontologie und historische Geologie (in German). 15: 91–111.
  9. S2CID 5488010
    .