Desulfobulbus propionicus

Source: Wikipedia, the free encyclopedia.

Desulfobulbus propionicus
Scientific classification
Domain:
Phylum:
Class:
Order:
Family:
Genus:
Species:
D. propionicus
Binomial name
Desulfobulbus propionicus
Pagani et al. 2011[1]
Type strain
1pr3T (DSM 2032, ATCC 33891, VKM B-1956)[1]

Desulfobulbus propionicus is a

free energy (in the form of electrons) and chemical products.[4]

Discovery

Desulfobulbus propionicus was discovered in 1982 by Friedrich Widdel and Norbert Pfenning.[2] Desulfobulbus propionicus was isolated from samples taken from anaerobic mud in a village ditch, pond, and marine mud flat in Germany.[2] All three strains were isolated using the agar shake dilution method on a basal medium with added sulfate, mineral salts, iron, trace elements, bicarbonate, sulfide, and seven vitamins.[2]

Strain Geographical Location[2] Habitat Type[2]
1pr3T Lindhort, Germany Freshwater ditch mud
2pr4 Hannover, Germany Freshwater pond mud
3pr10 Jadebusen, Germany (North Sea) Marine mud flat

Etymology

The

propionate.[2]

Taxonomic and phylogenetic description

Desulfobulbus propionicus possesses three strains: 1pr3T, 2pr4, and 3pr10.

fimbriae (2pr4 and 3pr10 strains do not).[2]

In terms of the genus Desulfobulbus, the closest relatives of D. propionicus are D. elongatus with an identity of 96.9%, followed by D. rhabdoformis, and then D. mediterraneus and D. japonicas with equal relation respective to the phylogenetic tree constructed using 16S rRNA sequences.[1]

Characterization

Morphology

Desulfobulbus propionicus is a

fimbriae.[2]

Strain Shape Motility Fimbriae
1pr3T Lemon-shaped Non-motile +
2pr4 Ovoid Single polar flagella -
3pr10 Ellipsoidal Single polar flagella -

Metabolism

Desulfobulbus propionicus is an anaerobic

butyrate as an electron donor and carbon source, however, the growth is slow compared to other substrates.[2]

Genome

Of the three strains within Desulfobulbus propionicus, 1pr3T is the only to have its genome completely sequenced.[1] It was sequenced in 2011 by Pagani et al.[1] Strain 1pr3T was found to encompass a genome size of 3,851,869 bp, with a G-C content of 58.93%.[1] Pagani et al. predicted 3,408 genes in the genome of 1pr3T, with 3,351 genes that encode proteins.[1] The genome contains 57 RNA genes and two rRNA operons.[1] Furthermore, there is 68 pseudo genes which makes up 2.0% of the total genome size.[1]

Ecology

Desulfobulbus propionicus inhabits anaerobic freshwaters and marine sediments.[1] Among the three strains, they differ in: temperature ranges, optimal temperature, pH range, optimal pH, and NaCl concentration requirements (1pr3T and 2pr4 show slowed growth above a NaCl concentration of 15 g/L, and 3pr10 shows no growth below 15 g/L).[1][2]

Strain Temperate Range (°C)[2] Temperature Optimum (°C)[2] pH Range[2] pH Optimum[2] NaCl Concentration Requirement (g/L)[2]
1pr3T 10 - 43 39 6.0 - 8.6 7.2 <15
2pr4 10 - 36 30 6.6 - 8.1 7.2 <15
3pr10 15 - 36 29 6.6 - 8.1 7.4 >15

Application

Desulfobulbus propionicus can serve as a biocatalyst in microbial electrosynthesis.[4] Microbial electrosynthesis is the usage of electrons by microorganism to reduce carbon dioxide to organic molecules.[4] Desulfobulbus propionicus, when present at the anode, oxidizes elemental sulfur to sulfate, which creates free electrons in the process.[4] The free electrons flow to the organism located at the cathode.[4] The microbe present at the cathode utilizes the electron energy transferred from Desulfobulbus propionicus to create organic matter (e.g. acetate) by reducing carbon dioxide.[4] The use of microbial electrosynthesis has potential to aid in the production and waste maintenance of industrial chemicals and energy production.[4]

References

External links

Further reading