Erbium(III) acetate
Appearance
![]() | |
Names | |
---|---|
Other names
Erbium acetate
Erbium triacetate | |
Identifiers | |
3D model (
JSmol ) |
|
ChemSpider | |
ECHA InfoCard
|
100.042.774 |
EC Number |
|
PubChem CID
|
|
CompTox Dashboard (EPA)
|
|
| |
SMILES
| |
Properties | |
Er(CH3COO)3 | |
Appearance | light pink solid |
soluble | |
Hazards | |
GHS labelling:[1] | |
![]() | |
Warning | |
H315, H319, H335 | |
P261, P264, P264+P265, P271, P280, P302+P352, P304+P340, P305+P351+P338, P319, P321, P332+P317, P337+P317, P362+P364, P403+P233, P405, P501 | |
Related compounds | |
Other cations
|
Holmium(III) acetate
Thulium(III) acetate |
Related compounds
|
Erbium oxide
|
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
|
Erbium(III) acetate is the acetate salt of erbium, with the proposed chemical formula of Er(CH3COO)3. It can be used to synthesize some optical materials.[2]
Physical properties
The tetrahydrate of erbium(III) acetate is thermally decomposed at 90 °C, giving a proposed anhydride:
- Er(CH3COO)3·4H2O → Er(CH3COO)3 + 4 H2O
Continued heating to 310 °C will form ketene:
- Er(CH3COO)3 → Er(OH)(CH3COO)2 + CH2=C=O
At 350 °C, the proposed Er(OH)(CH3COO)2 loses
Er2O3 at 590 °C.[3]
References
- ^ "Erbium(3+) acetate". pubchem.ncbi.nlm.nih.gov. Retrieved 22 July 2022.
- ISSN 0032-5910. Retrieved 2019-02-01.