Ketene

Source: Wikipedia, the free encyclopedia.
General formula for a ketene.

In organic chemistry, a ketene is an organic compound of the form RR'C=C=O, where R and R' are two arbitrary monovalent chemical groups (or two separate substitution sites in the same molecule).[1] The name may also refer to the specific compound ethenone H2C=C=O, the simplest ketene.[2]

Although they are highly useful, most ketenes are unstable. When used as reagents in a chemical procedure, they are typically generated when needed, and consumed as soon as (or while) they are produced.[1]

History

Ketenes were first studied as a class by Hermann Staudinger before 1905.[3]

Ketenes were systematically investigated by Hermann Staudinger in 1905 in the form of diphenylketene (conversion of -chlorodiphenyl acetyl chloride with zinc). Staudinger was inspired by the first examples of reactive organic intermediates and stable radicals discovered by Moses Gomberg in 1900 (compounds with triphenylmethyl group).[4]

Properties

Ketenes are highly electrophilic at the carbon atom bonded with the heteroatom, due to its sp character. Ketene can be formed with different heteroatom bonded to the sp carbon atom, such as

S or Se, respectively named ketene, thioketene
and selenoketene.

Ethenone, the simplest ketene, has different experimental lengths for each of the double bonds; the C=O bond is 1,160Å and the C=C bond is 1,314Å. The angle between the two H atoms is 121.5°, similar to the theoretically ideal angle formed in alkenes between sp2 carbon atom and H substituents.[5]

Ketenes are unstable and cannot be stored. In the absence of nucleophiles with which to react, ethenone dimerises to give β-lactone, a cyclic ester. If the ketene is disubstituted, the dimerisation product is a substituted cyclobutadione. For monosubstituted ketenes, the dimerisation could afford either the ester or the diketone product.

Synthesis

Ketene is produced on a commercial scale by thermal dehydration of acetic acid. Substituted ketenes can be prepared from acyl chlorides by an elimination reaction in which HCl is lost:

Formation of a ketene from an acyl chloride.
Formation of a ketene from an acyl chloride.

In this reaction, a base, usually

carbonyl group, inducing the formation of the carbon-carbon double bond and the loss of a chloride
ion:

Synthesis of Ketene

Ketenes can also be formed from α-diazoketones by the Wolff rearrangement.

Another way to generate ketenes is through

malonates with N-amino(pyridene) and DCC as the solvent.[6]

A more robust method for preparing ketenes is the

amides and β‐lactams. This system has a broad substrate scope and can be applied to various combinations of carbene precursors, nucleophiles and imines.[8]

Reactions and applications

Due to their

cumulated double bonds, ketenes are very reactive.[9]

Formation of carboxylic acid esters

By reaction with alcohols,

carboxylic acid esters
are formed:

Formation of carboxylic anhydrides

Ketenes react with a carboxylic acids to form

carboxylic acid anhydrides
:

Formation of amides

Ketenes react with ammonia and amines to give the corresponding amides:

Hydrolysis

By reaction with water, carboxylic acids are formed from ketenes

Formation of enol esters

Enol esters are formed from ketenes with

carbonyl compounds. The following example shows the reaction of ethenone with acetone
to form a propen-2-yl acetate:

Dimerisation

At room temperature, ketene quickly dimerizes to diketene, but the ketene can be recovered by heating:

Dimerisation of ketene

[2+2]-cycloaddition

Ketenes can react with

β-lactam by the reaction of a ketene with an imine (see Staudinger synthesis):[10][11]

Applications

Ketenes are generally very reactive, and participate in various

esterification
reaction.

They will also undergo [2+2] cycloaddition reactions with electron-rich alkynes to form cyclobutenones, or carbonyl groups to form beta-lactones. With imines, beta-lactams are formed. This is the Staudinger synthesis, a facile route to this important class of compounds. With acetone, ketene reacts to give isopropenyl acetate.[1]

A variety of

1,1-dihydroxyethene and acetic anhydride is produced by the reaction of acetic acid with ketene. Reactions between diols (HO−R−OH) and bis-ketenes (O=C=CH−R'−CH=C=O) yield polyesters
with a repeat unit of (−O−R−O−CO−R'−CO).

Ethyl acetoacetate, an important starting material in organic synthesis, can be prepared using a diketene in reaction with ethanol. They directly form ethyl acetoacetate, and the yield is high when carried out under controlled circumstances; this method is therefore used industrially.

See also

References

  1. ^ .
  2. .
  3. .
  4. ^ Thomas T. Tidwell, The first century of Ketenes (1905-2005): the birth of a family of reactive intermediates, Angewandte Chemie, Int. Edition, Band 44, 2005, S. 5778–5785
  5. .
  6. .
  7. .
  8. .

External links

  • Media related to Ketenes at Wikimedia Commons
This page is based on the copyrighted Wikipedia article: Ketene. Articles is available under the CC BY-SA 3.0 license; additional terms may apply.Privacy Policy