FARS2

Source: Wikipedia, the free encyclopedia.
FARS2
Gene ontology
Molecular function
Cellular component
Biological process
Sources:Amigo / QuickGO
Ensembl
UniProt
RefSeq (mRNA)

NM_006567
NM_001318872

NM_001039189
NM_024274

RefSeq (protein)

NP_001034278
NP_077236

Location (UCSC)Chr 6: 5.26 – 5.83 MbChr 13: 36.12 – 36.73 Mb
PubMed search[3][4]
Wikidata
View/Edit HumanView/Edit Mouse

Phenylalanyl-tRNA synthetase, mitochondrial (FARS2) is an enzyme that in humans is encoded by the FARS2 gene.[5] This protein encoded by FARS2 localizes to the mitochondrion and plays a role in mitochondrial protein translation. Mutations in this gene have been associated with combined oxidative phosphorylation deficiency 14, also known as Alpers encephalopathy, as well as spastic paraplegia 77 and infantile-onset epilepsy and cytochrome c oxidase deficiency.[6][7]

Structure

FARS2 is located on the

polypeptide chain, unlike the (alpha-beta)2 structure of the prokaryotic and eukaryotic cytoplasmic forms of PheRS. Structure analysis and catalytic properties indicate mitochondrial PheRSs may constitute a class of PheRS distinct from the enzymes found in prokaryotes and in the eukaryotic cytoplasm.[6]

Function

Aminoacyl-tRNA synthetases are a class of enzymes that charge tRNAs with their cognate amino acids.[6] FARS2 charges tRNA(Phe) with phenylalanine and catalyzes direct attachment of m-Tyr (an oxidized version of Phe) to tRNA(Phe). This makes it important for mitochondrial translation and for delivery of the misacylated tRNA to the ribosome and incorporation of ROS-damaged amino acid into proteins.[8][9][10][11] Alternative splicing results in multiple transcript variants.[6]

Catalytic activity

ATP + L-phenylalanine + tRNA(Phe) = AMP + diphosphate + L-phenylalanyl-tRNA(Phe)[8][9][10][11]

Clinical significance

Mutations in FARS2 have been associated to combined oxidative phosphorylation deficiency 14,

neurological deficits, and complex IV deficiency are the main characteristics of the disease stemming from this mutation.[7]

Interactions

FARS2 has been shown to have 193 binary

TADA2A, STX11, TRIM27, KRTAP10-5, KRTAP10-7, TFCP2, MKRN3, KRT31, HMBOX1, AGTRAP, ADAMTSL4, NOTCH2NL, CMTM5, TRIM54, FSD2, CYSRT1, HIGD1C, homez, SPRY1, ZNF500, KRT34, YIF1A, BAG4, TPM2, SYP, KRTAP10-8, KRTAP1-1, AP1B1, TRAF2, GRB10, MESD, TRIP6, CCDC152, BEX5, FHL5, MORN3, DGAT2L6, ZNF438, KCTD17, ZNF655, BANP, SPERT, NFKBID, ZNF526, PCSK5, DVL3, AJUBA, PPP1R16B, MDFI, DPH2, CDCA4, KRTAP3-3, BACH2, KCNF1, MAN1C1, RIMBP3, ZRANB1, ISY1, FKBP7, and E7.[14]

References

  1. ^ a b c GRCh38: Ensembl release 89: ENSG00000145982Ensembl, May 2017
  2. ^ a b c GRCm38: Ensembl release 89: ENSMUSG00000021420Ensembl, May 2017
  3. ^ "Human PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  4. ^ "Mouse PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  5. PMID 10329163
    .
  6. ^ a b c d e "Entrez Gene: FARS2 phenylalanyl-tRNA synthetase 2, mitochondrial".Public Domain This article incorporates text from this source, which is in the public domain.
  7. ^
    PMID 24161539
    .
  8. ^ a b c d "FARS2 - Phenylalanine--tRNA ligase, mitochondrial precursor - Homo sapiens (Human) - FARS2 gene & protein". www.uniprot.org. Retrieved 2018-09-05. This article incorporates text available under the CC BY 4.0 license.
  9. ^
    PMID 27899622
    .
  10. ^ .
  11. ^ .
  12. .
  13. .
  14. ^ "193 binary interactions found for search term FARS2". IntAct Molecular Interaction Database. EMBL-EBI. Retrieved 2018-09-05.


Further reading

External links

This article incorporates text from the United States National Library of Medicine, which is in the public domain.

This page is based on the copyrighted Wikipedia article: FARS2. Articles is available under the CC BY-SA 3.0 license; additional terms may apply.Privacy Policy