Aminoacyl tRNA synthetase
Anticodon-binding domain of tRNA | |||||||||
---|---|---|---|---|---|---|---|---|---|
|
DALR anticodon binding domain 1 | |||||||||
---|---|---|---|---|---|---|---|---|---|
|
DALR anticodon binding domain 2 | |||||||||
---|---|---|---|---|---|---|---|---|---|
![]() crystal structure of cysteinyl-tRNA synthetase binary complex with tRNACys | |||||||||
Identifiers | |||||||||
Symbol | DALR_2 | ||||||||
Pfam | PF09190 | ||||||||
Pfam clan | CL0258 | ||||||||
InterPro | IPR015273 | ||||||||
|
An aminoacyl-tRNA synthetase (aaRS or ARS), also called tRNA-ligase, is an
This is sometimes called "charging" or "loading" the tRNA with an amino acid. Once the tRNA is charged, a
Mechanism
The
The mechanism can be summarized in the following reaction series:
- Amino Acid + ATP → Aminoacyl-AMP + PPi
- Aminoacyl-AMP + tRNA → Aminoacyl-tRNA + AMP
Summing the reactions, the highly exergonic overall reaction is as follows:
- Amino Acid + tRNA + ATP → Aminoacyl-tRNA + AMP + PPi
Some synthetases also mediate an editing reaction to ensure high fidelity of tRNA charging. If the incorrect tRNA is added (aka. the tRNA is found to be improperly charged), the aminoacyl-tRNA bond is
The accuracy of aminoacyl-tRNA synthetase is so high that it is often paired with the word "superspecificity” when it is compared to other enzymes that are involved in metabolism. Although not all synthetases have a domain with the sole purpose of editing, they make up for it by having specific binding and activation of their affiliated amino acids. Another contribution to the accuracy of these synthetases is the ratio of concentrations of aminoacyl-tRNA synthetase and its cognate tRNA. Since tRNA synthetase improperly acylates the tRNA when the synthetase is overproduced, a limit must exist on the levels of aaRSs and tRNAs in vivo.[1][2]
Classes
There are two classes of aminoacyl tRNA synthetase, each composed of ten enzymes:[3][4]
- monomeric or dimeric(one or two subunits, respectively).
- Class II has three highly conserved sequence motifs. It aminoacylates at the 3'-OH of a terminal adenosine on tRNA, and is usually dimeric or tetrameric (two or four subunits, respectively). Although phenylalanine-tRNA synthetase is class II, it aminoacylates at the 2'-OH.
The amino acids are attached to the
Regardless of where the aminoacyl is initially attached to the nucleotide, the 2'-O-aminoacyl-tRNA will ultimately migrate to the 3' position via transesterification.
Bacterial aminoacyl-tRNA synthetases can be grouped as follows:[5]
Class | Amino acids |
---|---|
I | Arg, Cys, Gln, Glu, Ile, Leu, Met, Trp, Tyr, Val |
II | Ala, Asn, Asp, Gly, His, Lys, Pro, Phe, Ser, Thr |
Amino acids which use class II aaRS seem to be evolutionarily older.[6]


Structures
Both classes of aminoacyl-tRNA synthetases are
The catalytic domains of all the aaRSs of a given class are found to be homologous to one another, whereas class I and class II aaRSs are unrelated to one another. The class I aaRSs feature a cytidylyltransferase-like Rossmann fold seen in proteins like glycerol-3-phosphate cytidylyltransferase, nicotinamide nucleotide adenylyltransferase and archaeal FAD synthase, whereas the class II aaRSs have a unique fold related to biotin and lipoate ligases.
The
Aminoacyl-tRNA synthetases have been kinetically studied, showing that Mg2+ ions play an active catalytic role and therefore aaRs have a degree of magnesium dependence. Increasing the Mg2+ concentration leads to an increase in the equilibrium constants for the aminoacyl-tRNA synthetases’ reactions. Although this trend was seen in both class I and class II synthetases, the magnesium dependence for the two classes are very distinct. Class II synthetases have two or (more frequently) three Mg2+ ions, while class I only requires one Mg2+ ion.[10][11]
Beside their lack of overall sequence and structure similarity, class I and class II synthetases feature different ATP recognition mechanisms. While class I binds via interactions mediated by backbone hydrogen bonds, class II uses a pair of arginine residues to establish salt bridges to its ATP ligand. This oppositional implementation is manifested in two structural motifs, the Backbone Brackets and Arginine Tweezers, which are observable in all class I and class II structures, respectively. The high structural conservation of these motifs suggest that they must have been present since ancient times.[12]
Evolution
Most of the aaRSs of a given specificity are
The molecular phylogenies of aaRSs are often not consistent with accepted organismal
A widespread belief in the evolutionary stability of this superfamily, meaning that every organism has all the aaRSs for their corresponding amino acids, is misconceived. A large-scale genomic analysis on ~2500 prokaryotic genomes showed that many of them miss one or more aaRS genes whereas many genomes have 1 or more paralogs.[15] AlaRS, GlyRS, LeuRS, IleRS and ValRS are the most evolutionarily stable members of the family. GluRS, LysRS and CysRS often have paralogs, whereas AsnRS, GlnRS, PylRS and SepRS are often absent from many genomes.
With the exception of AlaRS, it has been discovered that 19 out of the 20 human aaRSs have added at least one new domain or motif.[16] These new domains and motifs vary in function and are observed in various forms of life. A common novel function within human aaRSs is providing additional regulation of biological processes. There exists a theory that the increasing number of aaRSs that add domains is due to the continuous evolution of higher organisms with more complex and efficient building blocks and biological mechanisms. One key piece of evidence to this theory is that after a new domain is added to an aaRS, the domain becomes fully integrated. This new domain's functionality is conserved from that point on.[17]
As genetic efficiency evolved in higher organisms, 13 new domains with no obvious association with the catalytic activity of aaRSs genes have been added.
Application in biotechnology
In some of the aminoacyl tRNA synthetases, the cavity that holds the amino acid can be mutated and modified to carry unnatural amino acids synthesized in the lab, and to attach them to specific tRNAs. This expands the genetic code, beyond the twenty canonical amino acids found in nature, to include an unnatural amino acid as well. The unnatural amino acid is coded by a nonsense (TAG, TGA, TAA) triplet, a quadruplet codon, or in some cases a redundant rare codon. The organism that expresses the mutant synthetase can then be genetically programmed to incorporate the unnatural amino acid into any desired position in any protein of interest, allowing biochemists or structural biologists to probe or change the protein's function. For instance, one can start with the gene for a protein that binds a certain sequence of DNA, and, by directing an unnatural amino acid with a reactive side-chain into the binding site, create a new protein that cuts the DNA at the target-sequence, rather than binding it.
By mutating aminoacyl tRNA synthetases, chemists have expanded the genetic codes of various organisms to include lab-synthesized amino acids with all kinds of useful properties: photoreactive, metal-chelating, xenon-chelating, crosslinking, spin-resonant, fluorescent, biotinylated, and redox-active amino acids.[18] Another use is introducing amino acids bearing reactive functional groups for chemically modifying the target protein.
Certain diseases’ causation (such as neuronal pathologies, cancer, disturbed metabolic conditions, and autoimmune disorders) have been correlated to specific mutations of aminoacyl-tRNA synthetases. Charcot-Marie-Tooth (CMT) is the most frequent heritable disorder of the peripheral nervous system (a neuronal disease) and is caused by a heritable mutation in glycol-tRNA and tyrosyl-tRNA.[19] Diabetes, a metabolic disease, induces oxidative stress, which triggers a build up of mitochondrial tRNA mutations. It has also been discovered that tRNA synthetases may be partially involved in the etiology of cancer.[20] A high level of expression or modification of aaRSs has been observed within a range of cancers. A common outcome from mutations of aaRSs is a disturbance of dimer shape/formation which has a direct relationship with its function. These correlations between aaRSs and certain diseases have opened up a new door to synthesizing therapeutics.[21]
Noncatalytic domains
The novel domain additions to aaRS genes are accretive and progressive up the
Substrate depletion
In 2022, it was discovered that aminoacyl-trna synthetases may incorporate alternative amino acids during shortages of their precursors. In particular, tryptophanyl-tRNA synthetase (WARS1) will incorporate phenylalanine during tryptophan depletion, essentially inducing a W>F codon reassignment.[35] Depletion of the other substrate of aminoacyl-tRNA synthetases, the cognate tRNA, may be relevant to certain diseases, e.g. Charcot–Marie–Tooth disease. It was shown that CMT-mutant glycyl-tRNA synthetase variants are still able to bind tRNA-gly but fail to release it, leading to depletion of the cellular pool of glycyl-tRNA-gly, what in turn results in stalling of the ribosome on glycine codons during mRNA translation.[36]
Clinical
Mutations in the
Prediction servers
- ICAARS: B. Pawar, and GPS Raghava (2010) Prediction and classification of aminoacyl tRNA synthetases using PROSITE domains. BMC Genomics 2010, 11:507
- MARSpred: Panwar B, Raghava GP (May 2012). "Predicting sub-cellular localization of tRNA synthetases from their primary structures". Amino Acids. 42 (5): 1703–13. S2CID 2996097.
- Prokaryotic AARS database: Chaliotis, et al. (Feb 2017). "The complex evolutionary history of aminoacyl-tRNA synthetases". Nucleic Acids Res. 45 (3): 1059–1068. PMID 28180287.
See also
- TARS (gene)
- AARS2 (gene)
References
- PMID 8230212.
- PMID 3144042.
- ^ "tRNA Synthetases". Archived from the original on 2012-08-04. Retrieved 2007-08-18.
- PMID 7773747.
- ISBN 978-0-470-57095-1.
- PMID 11164045.
- PMID 7692438.
- ^ "Molecule of the Month: Aminoacyl-tRNA Synthetases High Fidelity". Archived from the original on 2013-10-20. Retrieved 2013-08-04.
- PMID 10447505.
- PMID 17889423.
- PMID 9292495.
- PMID 29659563.
- ^ Ambrogelly, Alexandre; Söll, Dieter; Nureki, Osamu; Yokoyama, Shigeyuki; Ibba, Michael (2013), "Class I Lysyl-tRNA Synthetases", Madame Curie Bioscience Database [Internet], Landes Bioscience, retrieved 2025-02-21
- PMID 10704480.
- PMID 28180287.
- PMID 20700144.
- S2CID 29447608.
- ^ Peter G. Schultz, Expanding the genetic code
- PMID 17142907.
- PMID 22106287.
- PMID 18682559.
- PMID 3301842.
- S2CID 4324290.
- PMID 9434910.
- PMID 25035493.
- PMID 10102815.
- PMID 15193306.
- PMID 11773626.
- S2CID 6943506.
- PMID 20211432.
- PMID 20010843.
- PMID 15851690.
- PMID 21220307.
- PMID 23416400.
- PMID 35264796.
- PMID 34516840.
- PMID 30419932.
External links
- Amino+Acyl-tRNA+Synthetases at the U.S. National Library of Medicine Medical Subject Headings (MeSH)
- AARS human gene location in the UCSC Genome Browser.
- AARS human gene details in the UCSC Genome Browser.