Fervidicoccus

Source: Wikipedia, the free encyclopedia.

Fervidicoccus
Scientific classification Edit this classification
Domain: Archaea
Kingdom: Proteoarchaeota
Superphylum: TACK group
Phylum: Thermoproteota
Class: Thermoprotei
Order: Fervidicoccales
Perevalova et al., 2010[4]
Family: Fervidicoccaceae
Perevalova et al., 2010[3]
Genus: Fervidicoccus
Perevalova et al., 2010[2]
Species:
F. fontis
Binomial name
Fervidicoccus fontis
Perevalova et al., 2010[1]

Fervidicoccus fontis is an

pharmaceuticals.[9]

Scientific Classification

Taxonomy

F. fontis belongs to the

16S RNA sequence to F. fontis Kam940T, indicating a possible new species within the Fervidicoccus genus.[7]

Relatives

Desulfurococcus kamchatkensis.[8] F. fontis is distinguished from its relatives due to its unique set of traits, including at least 25% unique protein-encoding genes and an absence of extracellular hydrolases, with the exception of proteases.[8]

Discovery and isolation

The discovery of F. fontis was initiated through a prepared anaerobic basal

inoculum, sourced from a blend of sediment and water at 70 °C (158 °F).[7] This incubation also included the addition of chitin or β-keratin as polymeric substrates at a 2 g l-1 concentration.[7] Kam940T was isolated in a basal medium with peptone with 1.5% agar, whereas Kam1507b was obtained through serial dilution in a medium enriched with peptone.[7] Within 3-5 days, this approach successfully isolated organisms with coccoid cells, marking the discovery of unique Fervidicoccus strains: Kam940T and Kam1507b.[7] The purity of these isolated strains was confirmed through phase-contrast microscopy, which revealed that the strains consisted entirely of single cocci cells, ultimately demonstrating effective isolation and the discovery of a new species.[7]

Morphology

F. fontis is characterized by its coccus-shaped cellular morphology and lack of motility due to their absence of a flagellum.[6] Their cell envelope consists of a cell membrane formed by a layer of protein subunits.[6] The dimensions of these cells can vary, with their lengths and widths ranging between 1-3 μm.[6]

Metabolism

F. fontis, an

Pyruvate-ferredoxin oxidoreductase facilitates the production of acetyl-CoA, CO2, and reduced ferredoxin.[8] Subsequently, acetyl-CoA is transformed into acetate, generating ATP in a reaction carried out by acetyl-CoA synthetases.[8] Despite its metabolic versatility, F. fontis lacks complete pathways for carbohydrate catabolism.[8] This is evidenced by the lack of genes typically found in organisms capable of breaking down carbohydrates, such as glycoside hydrolases, polysaccharide lyases, or carbohydrate esterases.[8]

Genomics

The

protein-coding genes coverage of the entire F. fontis genome.[8]

Ecology

The F. fontis Kam940T and Kam1507b strains were derived from areas with temperatures ranging from 75 and 80 °C (167 and 176 °F) and pH levels of 6.5 and 6.3, respectively.

Denaturing gradient gel electrophoresis (DGGE) identified Fervidicoccaceae in enrichment cultures from Uzon Caldera, demonstrating their ability to grow at high temperatures (68–77 °C (154–171 °F)) and a pH range of 6.4–7.0 on various polymeric substrates.[7] Sampling of environmental DNA uncovered the presence of Fervidicoccaceae in various hot springs around the world.[7] These findings show that the 16S ribosomal RNA sequences of these organisms share a 94-95% 16S similarity to that of F. fontis, indicating F. fontis's widespread distribution and ecological adaptability.[7]

Significance

The demand for new

References

  1. ^ "Fervidicoccus fontis Perevalova et al., 2010". Global Biodiversity Information Facility. Retrieved 30 April 2024.
  2. ^ "Fervidicoccus Perevalova et al., 2010". Global Biodiversity Information Facility. Retrieved 30 April 2024.
  3. ^ IRMNG (2024). "Fervidicoccaceae Perevalova et al., 2010". Retrieved 30 April 2024.
  4. ^ IRMNG (2024). "Fervidicoccales". Retrieved 30 April 2024.
  5. ^ , retrieved 2024-04-07
  6. ^ .
  7. ^ , retrieved 2024-04-07
  8. ^ .
  9. ^ .
  10. , retrieved 2024-04-07
  11. .
  12. .
  13. .