Insulin pump

Source: Wikipedia, the free encyclopedia.
Insulin pump
Paradigm insulin pump 530g, showing an infusion set loaded into spring-loaded insertion device called serter. A reservoir is attached to the infusion set (shown here removed from the pump).
Insulin pump in use
Child diabetic wearing a state-of-the-art insulin pump (referred to as a "patch pump"). His waterproof device needs no one infusion set

An insulin pump is a medical device used for the administration of

diabetes mellitus, also known as continuous subcutaneous
insulin therapy. The device configuration may vary depending on design. A traditional pump includes:

Other configurations are possible. More recent models may include disposable or semi-disposable designs for the pumping mechanism and may eliminate tubing from the infusion set.

An insulin pump is an alternative to multiple daily injections of insulin by

flexible insulin therapy when used in conjunction with blood glucose monitoring and carbohydrate counting
.

Medical uses

Insulin pumps are used to deliver insulin on a continuous basis to a person with

type I diabetes
.

Advantages

Disadvantages

Insulin pumps, cartridges, and infusion sets may be far more expensive than syringes used for insulin injection with several insulin pumps costing more than $6,000; necessary supplies can cost over $300.[3] Another disadvantage of insulin pump use is a higher risk of developing diabetic ketoacidosis if the pump malfunctions.[3] This can happen if the pump battery is discharged, if the insulin is inactivated by heat exposure, if the insulin reservoir runs empty, the tubing becomes loose and insulin leaks rather than being injected, or if the cannula becomes bent or kinked in the body, preventing delivery.[3] Therefore, pump users typically monitor their blood sugars more frequently to evaluate the effectiveness of insulin delivery.

  • Since the insulin pump needs to be worn most of the time, pump users need
    strategies
    to participate in activities that may damage the pump, such as rough sports and activities in the water. Some users may find that wearing the pump all the time (together with the infusion set tubing) is uncomfortable or unwieldy.
  • Possibility of insulin pump malfunctioning, and having to resort back to multiple daily injections until a replacement becomes available. However most pump manufacturers will have a program that will get a new pump to the user within 24 hours or allow the user to buy a second pump as a backup for a small fee. Additionally the pump itself will make many safety checks throughout the day, in some cases up to 4,000,000 and may have a second microprocessor dedicated to this.[citation needed]
  • Users may experience scar tissue buildup around the inserted cannula, resulting in a hard bump under the skin after the cannula is removed. The scar tissue does not heal particularly fast, so years of wearing the pump and changing the infusion site will cause the user to start running out of viable "spots" to wear the pump. In addition, the areas with scar tissue buildup generally have lower insulin sensitivity and may affect basal rates and bolus amounts. In some extreme cases the insulin delivery will appear to have no/little effect on lowering blood glucose levels and the site must be changed.
  • Users may experience allergic reactions and other skin irritation from the adhesive on the back of an infusion set. Experience may vary according to the individual, the pump manufacturer, and the type of infusion set used.
  • A larger supply of insulin may be required in order to use the pump. Many units of insulin can be wasted while refilling the pump's reservoir, filling the tubing, or changing an infusion site. This may affect prescription and dosage information.

Accessibility

Use of insulin pumps is increasing because of:

  • Easy delivery of multiple insulin injections for those using intensive insulin therapy.
  • Accurate delivery of very small boluses, helpful for infants.
  • Growing support among doctors and insurance companies due to the benefits contributing to reducing the incidence of long-term complications.
  • Improvements in blood glucose monitoring. New meters require smaller drops of blood, and the corresponding lancet poke in the fingers is smaller and less painful. These meters also support alternate site testing for the most routine tests for practically painless testing.

History

In 1974, the first insulin pump was created and was named the Biostator. The first pump was a 60 kg bedside device.[10] It also had the capability of monitoring blood glucose levels, so this also doubles as the first continuous glucose monitor. Between 1978 and 1988, Robert Channon, working with Guy's Hospital and the Bristol Royal Infirmary, developed a series of miniature insulin infusion pumps.[11][12] Today, insulin pumps are so small that they can fit in a pocket or a purse.

In 1984, an Infusaid implantable infusion device was used to treat a 22-year-old patient successfully.[13]

The insulin pump was first endorsed in the United Kingdom in 2003 by the National Institute for Health and Care Excellence (NICE).

Developments

New insulin pumps are becoming "smart" as new features are added to their design. These simplify the tasks involved in delivering an insulin bolus.

MiniMed 670G is a type of insulin pump and sensor system created by

basal insulin requirement and automatically adjusts its delivery to the body.[20][21][22]

Mylife YpsoPump, developed by

Ypsomed, was launched in Europe in 2016.[23] Eli Lilly had planned to work with Ypsomed to introduce this to the United States, but that effort was terminated in 2022.[23]

Omnipod 5: On January 28, 2022, Insulet Corporation announced the FDA has approved the Omnipod 5, the first tubeless closed loop insulin pump with Smartphone control, working with the Dexcom G6 Continuous Glucose Monitor. The Omnipod 5 will have a feature named SmartAdjust technology that allows for the increase, decrease, or suspension of insulin based on the user's custom blood glucose targets.[24]

INSUL by AgVa: AgVa Healthcare announced that Insul by Agva is the world's most advanced and affordable Insulin pump. Features such as a built-in glucometer, Bluetooth connectivity, android and IOS app, as well as long-lasting and economical disposables.[25]

Future developments

Dosing

Filling an insulin pump reservoir. (Left to right) 1: Reservoir in sterile packaging. 2: Filling the reservoir. 3: Reservoir with needle and plunger removed, ready for attachment to infusion set.

An insulin pump allows the replacement of slow-acting insulin for basal needs with a continuous infusion of rapid-acting insulin.

The insulin pump delivers a single type of rapid-acting insulin in two ways:[29]

Bolus shape

An insulin pump user can influence the profile of the rapid-acting insulin by shaping the bolus. Users can experiment with bolus shapes to determine what is best for any given food, which means that they can improve control of

blood sugar
by adapting the bolus shape to their needs.

A standard bolus is an infusion of insulin pumped completely at the onset of the bolus. It's the most similar to an injection. By pumping with a "spike" shape, the expected action is the fastest possible bolus for that type of insulin. The standard bolus is most appropriate when eating high carb low protein low fat meals because it will return blood sugar to normal levels quickly.

An extended bolus is a slow infusion of insulin spread out over time. By pumping with a "square wave" shape, the bolus avoids a high initial dose of insulin that may enter the blood and cause low blood sugar before digestion can facilitate sugar entering the blood. The extended bolus also extends the action of insulin well beyond that of the insulin alone. The extended bolus is appropriate when covering high fat high protein meals such as steak, which will be raising blood sugar for many hours past the onset of the bolus. The extended bolus is also useful for those with slow digestion (such as with gastroparesis or coeliac disease).

A combination bolus/multiwave bolus is the combination of a standard bolus spike with an extended bolus square wave. This shape provides a large dose of insulin up front, and then also extends the tail of the insulin action. The combination bolus is appropriate for high carb high fat meals such as pizza, pasta with heavy cream sauce, and chocolate cake.

A super bolus is a method of increasing the spike of the standard bolus. Since the action of the bolus insulin in the blood stream will extend for several hours, the basal insulin could be stopped or reduced during this time. This facilitates the "borrowing" of the basal insulin and including it into the bolus spike to deliver the same total insulin with faster action than can be achieved with spike and basal rate together. The super bolus is useful for certain foods (like sugary breakfast cereals) which cause a large post-prandial peak of blood sugar. It attacks the blood sugar peak with the fastest delivery of insulin that can be practically achieved by pumping.

Bolus timing

Since the pump user is responsible to manually start a bolus, this provides an opportunity for the user to pre-bolus to improve upon the insulin pump's capability to prevent post-prandial hyperglycemia. A pre-bolus is simply a bolus of insulin given before it is actually needed to cover carbohydrates eaten.

There are two situations where a pre-bolus is helpful:

  1. A pre-bolus of insulin will mitigate a spike in blood sugar that results from eating high glycemic foods. Infused insulin analogs such as
    Apidra
    typically begin to reduce blood sugar levels 15 or 20 minutes after infusion. As a result, easily digested sugars often hit the bloodstream much faster than infused insulin intended to cover them, and the blood sugar level spikes upward as a result. If the bolus were infused 20 minutes before eating, then the pre-bloused insulin would hit the bloodstream simultaneously with the digested sugars to control the magnitude of the spike.
  2. A pre-bolus of insulin can combine a meal bolus and a correction bolus when the blood sugar is above the target range before a meal. The timing of the bolus is a controllable variable to bring down the blood sugar level before eating again causes it to increase.

Similarly, a low blood sugar level or a low glycemic food might be best treated with a bolus after a meal is begun. The blood sugar level, the type of food eaten, and a person's individual response to food and insulin affect the ideal time to bolus with the pump.

Basal rate patterns

The pattern for delivering basal insulin throughout the day can also be customized with a pattern to suit the pump user.

  • A reduction of basal at night to prevent low blood sugar in infants and toddlers.
  • An increase of basal at night to counteract high blood sugar levels due to growth hormone in teenagers.
  • A pre-dawn increase to prevent high blood sugar due to the
    dawn effect
    in adults and teens.
  • In a proactive plan before regularly scheduled exercise times such as morning gym for elementary school children or after-school basketball practice for high school children.

Basal rate determination

Basal insulin requirements will vary between individuals and periods of the day. The basal rate for a particular time period is determined by fasting while periodically evaluating the blood sugar level. Neither food nor bolus insulin must be taken for 4 hours before or during the evaluation period. If the blood sugar level changes dramatically during evaluation, then the basal rate can be adjusted to increase or decrease insulin delivery to keep the blood sugar level approximately steady.

For instance, to determine an individual's morning basal requirement, they must skip breakfast. On waking, they would test their blood glucose level periodically until lunch. Changes in blood glucose level are compensated with adjustments in the morning basal rate. The process is repeated over several days, varying the fasting period, until a 24-hour basal profile has been built up which keeps fasting blood sugar levels relatively steady. Once the basal rate is matched to the fasting basal insulin need, the pump user will then gain the flexibility to skip or postpone meals such as sleeping late on the weekends or working overtime on a weekday.

Many factors can change insulin requirements and require an adjustment to the basal rate:

  • continued beta cell death following diagnosis of type 1 diabetes (
    honeymoon period
    )
  • growth spurts particularly during puberty
  • weight gain or loss
  • any drug treatment that affects insulin sensitivity (e.g.
    corticosteroids
    )
  • eating, sleeping, or exercise routine changes
  • whenever the control over hyperglycemia is degrading
  • and according to the seasons.

A pump user should be educated by their diabetes care professional about basal rate determination before beginning pump therapy.

Temporary basal rates

Since the basal insulin is provided as a rapid-acting insulin, the basal insulin can be immediately increased or decreased as needed with a temporary basal rate. Examples when this is helpful include:

  • As a passenger during a long car drive, when insulin needs are different due to inactivity.
  • While driving on an extended trip, to reduce the risk of hypoglycemia, a lower temporary basal rate may be programmed.
  • During and after spontaneous exercise or sports activities, when the body needs less insulin.
  • During illness or stress, when basal demand increases due to insulin resistance.
  • When blood
    ketones
    are present, when additional insulin is needed.
  • When on an extended fast (such as Ramadan, Lent, or Yom Kippur) when basal requirements may be lower.
  • During
    menses
    , when additional basal insulin might be needed.

Security

In August 2011, an IBM researcher, Jay Radcliffe, demonstrated a security flaw in insulin pumps. Radcliffe was able to hack the wireless interface used to control the pump remotely.[30] Pump manufacturer Medtronic later said security research by McAfee uncovered a flaw in its pumps that could be exploited.[31]

See also

References

  1. ^ Kesavadev J, Kumar A, Ahammed S, Jothydev S (2008). "Experiences with Insulin Pump in 52 Patients with Type 2 Diabetes in India". DiabetesPro. American Diabetes Association. 2021-PO. Archived from the original on 24 February 2012.
  2. ^ Muppidi R. "Insulin Pump Training". Advanced Endocrine and Diabetes Hospital. AED Hospital. Retrieved 3 December 2019.
  3. ^
    PMID 26651892
    .
  4. ^ Graveling AJ, McIntyre EA (January 2009). "Insulin Delivery Devices". Journal of the Royal College of Physicians of Edinburgh. 39 (2): 146–150.
  5. PMID 17147307
    .
  6. .
  7. .
  8. ^ Kesavadev J, Rasheed SA. "Dramatic Response of Painful Peripheral Neuropathy with Insulin Pump in Type 2 Diabetes". DiabetesPro. American Diabetes Association. 2097-PO. Archived from the original on 24 February 2012.
  9. PMID 19698065
    .
  10. ^ Mascini M (April 2007). A Brief Story of Biosensor Technology, chapter in Biotechnological Applications of Photosynthetic Proteins: Biochips, Biosensors and Biodevices. pp. 4–10. Retrieved 24 March 2023.
  11. ^ "Insulin pump calls the shots". New Scientist. Vol. 88, no. 1226. 6 November 1980. p. 369. Retrieved 24 March 2023.
  12. ^ "Multiple injection infusion device (portable), UK Patent Application GB2222525A, 28 March 1988" (PDF). Google Patents. Retrieved 24 March 2023.
  13. PMID 6442226
    .
  14. ^ "What is SmartGuard™ Technology?". 12 March 2018.
  15. ^ "Animas Vibe and CGM-system". Animas. Archived from the original on 23 January 2014. Retrieved 28 January 2014.
  16. ^ "Animas Vibe Insulin Pump with Latest Dexcom CGM Technology Now Available in Canada". CNW. Archived from the original on 16 July 2015. Retrieved 28 January 2014.
  17. ^ Brown A (17 October 2017). "Animas Closes Operations and Exits Insulin Pump Market". Diatribe.org. Retrieved 24 March 2018.
  18. ^ "FDA authorizes first interoperable insulin pump intended to allow patients to customize treatment through their individual diabetes management devices". FDA. 14 February 2019. Retrieved 4 March 2021.
  19. ^ "FDA authorizes first fully interoperable continuous glucose monitoring system, streamlines review pathway for similar devices". FDA. 27 March 2018. Retrieved 4 March 2021.
  20. ^ "Recently approved devices: The 670G System - P160017". FDA. 28 September 2016.
  21. ^ a. Dealing with any kind of medical technology, there are going to be pros and cons. With an insulin pump there are many to consider. Some of the pros of insulin pump therapy are precise insulin delivery down to the 0.025 minimum. They also replace the need to give a shot each time you eat. It allows for easier exercise management. Another large pro to an insulin pump is the reduced chance of variability with the patient’s blood glucose levels. Some of the cons are the cost of the insulin pump and supplies, the risk of infection at the pump site, and risk of DKA because of a pump malfunction.
  22. ^ "What are the Advantages and Disadvantages of an Insulin Pump?". Children's Hospital of Michigan. 18 November 2019. Retrieved 8 May 2021.
  23. ^ a b Whooley, Sean (9 December 2022). "Eli Lilly discontinues Ypsomed collaboration to pursue its own U.S. insulin pump offering". Medical Design & Outsourcing. Retrieved 10 December 2022.
  24. ^ "Omnipod® 5 | Omnipod". www.omnipod.com. Retrieved 28 January 2022.
  25. ^ "INSUL by AgVa | AgVa Healthcare". Retrieved 29 March 2022.
  26. ^ Brown A, Liu N (31 March 2014). "Dr. Ed Damiano Presents Next Set of Bionic Pancreas Study Results at ATTD". diaTribe. The diaTribe Foundation. Retrieved 19 March 2015.
  27. ^ "Humalog prescribing information" (PDF). Eli Lilly and Company. 2019.
  28. ^ "Linjeta duration of action". Biodel, Inc. Archived from the original on 31 March 2013.
  29. ^ "Insulin pumps". Diabetes.co.uk. 15 January 2019.
  30. ^ "Insulin Pumps Vulnerable to Hacking". Fox News. Associated Press. 22 October 2015.
  31. ^ "Exclusive: Medtronic probes insulin pump risks". Reuters. 25 October 2011.

External links