Lexell's Comet

Source: Wikipedia, the free encyclopedia.

D/1770 L1 (Lexell)
Discovery
Longitude of
perihelion
359.48 ± 0.24
Last perihelionAugust 14, 1770
Next perihelionunknown/Lost
Physical characteristics
Dimensions~4–30 km
(529668) 2010 JL33
Discovery
Synodic rotation period
9.443±0.002 h[7]
0.047±0.009[6]
17.9[3]

D/1770 L1, popularly known as Lexell's Comet after its orbit computer

distance from the Earth to the Moon. The comet has not been seen since 1770 and is considered a lost comet
.

Lexell's Comet's 1770 passing still holds the record of closest observed approach of Earth by a comet.

P/1999 J6 (SOHO), which may have passed even closer at about 0.012 AU (1,800,000 km; 1,100,000 mi) from Earth on June 12, 1999,[10] but the uncertainties are around ±1.5 million km[11] as the P/1999 J6 approach was unobserved.[12]

Discovery

Charles Messier, who discovered Lexell's Comet

The comet was discovered on June 14, 1770, in the constellation

arcminutes across by June 24: by this time it was of magnitude +2. The comet was also noted by several other astronomers.[citation needed
]

The comet was observed in Japan. Surviving records identify it as an astronomical and historical phenomenon.[13]

It was observed in the Hejaz in Safar 1184 AH (June 1770), where some believed it to be the comet predicted by the poet al-Fasi, portending future events.[14][15]

Close approach to Earth

On July 1, 1770, the comet passed 0.015

nucleus as being as large as Jupiter, "surrounded with a coma of silver light, the brightest part of which was as large as the moon's orb".[1]

Messier was the last astronomer to observe the comet as it moved away from the Sun, on October 3, 1770.[1]

Orbit

Scientists at the time largely believed that comets originated outside the solar system, and therefore initial attempts to model the comet's orbit assumed a

Jupiter family comet (as well as the first known near-Earth object).[18]

After conducting further work in cooperation with Pierre-Simon Laplace, Lexell argued that a subsequent interaction with Jupiter in July 1779[19] had further perturbed its orbit, either placing it too far from Earth to be seen or perhaps ejecting it from the Solar System altogether.[20] The comet likely no longer approaches any closer to the Sun than Jupiter's orbit.[21][18]

Although Comet Lexell was never seen again, it remained interesting to astronomers. The Paris Academy of Sciences offered a prize for an investigation into the orbit of the comet. Johann Karl Burckhardt won in 1801, and confirmed the calculations of Lexell. He calculated that the 1779 close approach to Jupiter drastically altered its orbit and left it with a perihelion of 3.33 AU.[22] In the 1840s, Urbain Le Verrier carried out further work on the comet's orbit and demonstrated that despite potentially approaching Jupiter as close as three and a half radii from the planet's centre the comet could never have become a satellite of Jupiter.[20] He showed that after the second encounter with Jupiter many different trajectories were possible, given the uncertainties of the observations, and the comet could even have been ejected from the Solar System. This foreshadowed the modern scientific idea of chaos.[20]

Lexell's work on the orbit of the comet is considered to be the beginning of modern understanding of orbit determination.[23]

2018 recalculation

In a 2018 paper, Quan-Zhi Ye et al. used recorded observations of the comet to recalculate the orbit, finding Le Verrier's 1844 calculations to be highly accurate. They simulated the orbit forwards to the year 2000, finding that 98% of possible orbits remained orbiting the Sun, 85% with a perihelion nearer than the asteroid belt, and 40% crossing Earth's orbit. The numbers remain consistent even when including non-gravitational parameters caused by pressures from a comet's jets.[2]

Based on its apparent brightness in 1770, they estimate the comet to be between 4 and 50 kilometers in diameter, most likely less than 30. Additionally, based on a lack of meteor showers, they suggest that the comet may have ceased major activity before 1800 AD.[2]

Identification

The aforementioned 2018 paper also attempted to identify if any discovered object may be a remnant of Lexell's comet. With an assumed size of >4 kilometers, it is highly unlikely that this comet would remain in the inner solar system and be undiscovered. Most new asteroids discovered even in the asteroid belt (as of 2018) are only 1–4 kilometers across. If Lexell's comet remains in the inner Solar System, it would most likely be an unidentified asteroid. The paper identified four potential asteroids which could be related: (529668) 2010 JL33 (99.2% chance), 1999 XK136 (74% chance), 2011 LJ1 (0.2% chance), and 2001 YV3 (~0% chance).

longitude of perihelion (a value that does not evolve much even over an extended period of time) of these asteroids are 2.32°, 6.22°, 356.98°, and 351.62°, respectively. For comparison, the longitude of perihelion of Lexell's comet was 359.48 ± 0.24°.[2]

They find that 2010 JL33 is very likely to be a remnant of Lexell's comet, although due to a number of close approaches with Jupiter as well as uncertain non-gravitational parameters, a definite link cannot be made.[2] 2010 JL33 will pass about 0.0227 AU (3.4 million km) from Venus on November 3, 2184.[4]

See also

  • P/2016 BA14
    (the closest comet flyby since Lexell, in 2016)

Notes

  1. 2P/Encke and 1P/Halley – Halley's Comet
    .

References

  1. ^ a b c d e f Kronk, G. Cometography: D/1770 L1 (Lexell), accessed November 20, 2008.
  2. ^
    S2CID 118895688
    .
  3. ^ a b c d "529668 (2010 JL33)". Minor Planet Center. Retrieved August 18, 2022.
  4. ^ a b c "JPL Small-Body Database Browser: 529668 (2010 JL33)" (March 4, 2020 last obs.). Jet Propulsion Laboratory. Retrieved August 18, 2022.
  5. ^ "ALCDEF: Asteroid Photometry Database". alcdef. Retrieved November 24, 2019.
  6. ^
    S2CID 239991
    .
  7. Bibcode:2011MPBu...38..131B.{{cite journal}}: CS1 maint: multiple names: authors list (link
    )
  8. ^ Kronk, G. The Closest Approaches of Comets to Earth, accessed November 20, 20, 2008. It was thought that C/1491 B1 may have approached even closer on February 20, 1491, but its orbit was retracted in 2002 due to a misunderstanding of the records. See Approximate Orbits of Ancient and Medieval Comets: 3. Remarks and Discussion
  9. ^ a b c "Closest Approaches to the Earth by Comets". Minor Planet Center. Retrieved January 10, 2018.
  10. ^ "JPL Close-Approach Data: P/1999 J6 (SOHO)" (2010-04-22 last obs (arc=10.9 yr; JFC)). Retrieved June 28, 2012.
  11. ^ "Horizons Batch for P/1999 J6 on 1999-Jun-12". JPL Horizons. Retrieved August 29, 2022.
  12. S2CID 85442034. Archived from the original
    (PDF) on December 16, 2018. Retrieved January 11, 2018.
  13. ^ Hall, John. (1955). Tanuma Okitsugu, 1719–1788, p. 120.
  14. ^ Daḥlan, Aḥmad Zaynī (2007) [1887/1888]. Khulāṣat al-kalām fī bayān umarā' al-Balad al-Ḥarām خلاصة الكلام في بيان أمراء البلد الحرام (in Arabic). Dār Arḍ al-Ḥaramayn. pp. 274–276.
  15. JSTOR 592912
    .
  16. .
  17. ^ Leverington, D. Babylon to Voyager and Beyond: A History of Planetary Astronomy, Cambridge University Press, 2003, p.193
  18. ^ a b Valsecchi, G. 'A comet heading towards Earth: the first NEO' Archived March 26, 2012, at the Wayback Machine, in Tumbling Stone, Issue 2, accessed November 21, 2008
  19. ^ "Horizons Batch for the nominal (best-fit) Jupiter approach in July 1779". JPL Horizons. Retrieved August 25, 2022.
  20. ^ a b c Valsecchi, G. 'Le Verrier's computations and the concept of Chaos' Archived March 26, 2012, at the Wayback Machine, in Tumbling Stone Archived March 26, 2012, at the Wayback Machine, Issue 3, accessed February 11, 2011
  21. ^ "JPL Horizons Batch for Heliocentric Orbit July 1779 to October 1779". JPL Horizons On-Line Ephemeris System. Jet Propulsion Laboratory. Retrieved August 25, 2022. (Perihelion after July Jupiter approach is QR= 5E+00)
  22. . Retrieved January 11, 2018.
  23. ^ Valsecchi, G. '236 Years Ago...' in Near Earth Objects, Our Celestial Neighbors: Opportunity and Risk : Proceedings of the 236th Symposium of the International Astronomical Union, Cambridge University Press, 2006, xvii–xviii

External links