Nanoarchaeum equitans

Source: Wikipedia, the free encyclopedia.

Nanoarchaeum equitans
Two Nanoarchaeum equitans cells (and its larger host Ignicoccus)
Scientific classification Edit this classification
Domain: Archaea
Superphylum: DPANN
Phylum: Nanoarchaeota
Class: Nanoarchaeia
Order: Nanoarchaeales
Family: Nanoarchaeaceae
Genus: Nanoarchaeum
Species:
N. equitans
Binomial name
Nanoarchaeum equitans
Huber et al. 2002

Nanoarchaeum equitans is a species of

obligate symbiont on the archaeon Ignicoccus; it must be in contact with the host organism to survive. Nanoarchaeum equitans cannot synthesize lipids but obtains them from its host. Its cells are only 400 nm
in diameter, making it the smallest known living organism, and the smallest known archaeon.

N. equitans' genome consists of a single

lipids, but encodes everything needed for repair and replication. N. equitans contains several genes that encode proteins employed in recombination, suggesting that N. equitans can undergo homologous recombination.[1]
A total of 95% of its DNA encodes for proteins or stable RNA molecules.

N. equitans has small appendages that come out of its circular structure. The cell surface is covered by a thin, lattice-shaped S-layer, which provides structure and protection for the entire cell.

Genome

Mycoplasma genitalium (580 Kbp in size, with 515 protein-coding genes) was regarded as a cellular unit with the smallest genome size until 2003 when Nanoarchaeum was sequenced (491 Kbp, with 536 protein-coding genes).

Genetically, Nanoarchaeum is peculiar in that its

phyla, "Euryarchaeota" and Thermoproteota, was as great as the difference between the phyla. Therefore, it was given its own phylum, called "Nanoarchaeota". However, another group (see References) compared all of the open reading frames to the other Archaea. They argue that the initial sample, ribosomal RNA only, was biased and Nanoarchaeum actually belongs to the "Euryarchaeota" phylum.[2]

The sequencing of the Nanoarchaeum genome has revealed a wealth of information about the organism's biology. The genes for several vital metabolic pathways appear to be missing. Nanoarchaeum cannot synthesize most

translation. This may explain why the genome lacks the large stretches of non-coding DNA
characteristic of other parasites.

The organism's ability to produce its own ATP is also in question.

Nanoarchaeum lacks the ability to metabolize hydrogen and sulfur for energy, as many thermophiles do. It does have five subunits of an ATP synthase as well as pathways for oxidative deamination. Whether it obtains energy from biological molecules imported from Ignicoccus, or whether it receives ATP directly is currently unknown. The genome and proteome composition of N. equitans are marked with the signatures of dual adaptation – one to high temperature and the other to obligate parasitism (or symbiosis).

See also

References

  1. ^ Waters E, Hohn MJ, Ahel I, Graham DE, Adams MD, Barnstead M, Beeson KY, Bibbs L, Bolanos R, Keller M, Kretz K, Lin X, Mathur E, Ni J, Podar M, Richardson T, Sutton GG, Simon M, Soll D, Stetter KO, Short JM, Noordewier M. The genome of Nanoarchaeum equitans: insights into early archaeal evolution and derived parasitism. Proc Natl Acad Sci U S A. 2003 Oct 28;100(22):12984-8. doi: 10.1073/pnas.1735403100. Epub 2003 Oct 17. PMID: 14566062; PMCID: PMC240731
  2. PMID 15892870
    .
  3. ^ Brown AM, Hoopes SL, White RH, Sarisky CA. Purine biosynthesis in archaea: variations on a theme. Biol Direct. 2011 Dec 14;6:63. doi: 10.1186/1745-6150-6-63. PMID: 22168471; PMCID: PMC3261824

Further reading

Di Giulio, Massimo (January 1, 2013). "Is Nanoarchaeum equitans a paleokaryote?". Journal of Biological Research.

External links