Nitroso

Source: Wikipedia, the free encyclopedia.
Structural formula of nitroso group

In

alkyl nitrites
; RO−N=O).

Synthesis

Nitroso compounds can be prepared by the reduction of nitro compounds[1] or by the oxidation of hydroxylamines.[2] Ortho-nitrosophenols may be produced by the Baudisch reaction. In the Fischer–Hepp rearrangement aromatic 4-nitrosoanilines are prepared from the corresponding nitrosamines.

Properties

Structure of 2-nitrosotoluene dimer[3]

Nitrosoarenes typically participate in a

cis and trans isomers.[4]

When stored in protic media, primary and secondary nitrosoalkanes isomerize to oximes.[5]

Due to the stability of the nitric oxide

bond dissociation energies: nitrosoalkanes have BDEs on the order of 30–40 kcal/mol (130–170 kJ/mol), while nitrosoarenes have BDEs on the order of 50–60 kcal/mol (210–250 kJ/mol). As a consequence, they are generally heat- and light-sensitive. Compounds containing O–(NO) or N–(NO) bonds generally have even lower bond dissociation energies. For instance, N-nitrosodiphenylamine, Ph2N–N=O, has a N–N bond dissociation energy of only 23 kcal/mol (96 kJ/mol).[6] Organonitroso compounds serve as a ligands giving transition metal nitroso complexes.[7]

Reactions

Many reaction exists which make use of an intermediate nitroso compound, such as the Barton reaction and Davis–Beirut reaction, as well as in the synthesis of indoles, for example: Baeyer–Emmerling indole synthesis, Bartoli indole synthesis. In the Saville reaction, mercury is used to replace a nitrosyl from a thiol group.

C-nitroso compounds are used in organic synthesis as synthons in some well-documented chemical reactions such as hetero Diels-Alder (HDA), nitroso-ene and nitroso-aldol reactions.[8]

Nitrosation vs. nitrosylation

Nitrite can enter two kinds of reaction, depending on the physico-chemical environment.

Many primary alkyl N-nitroso compounds, such as CH3N(H)NO, tend to be unstable with respect to hydrolysis to the alcohol. Those derived from secondary amines (e.g., (CH3)2NNO derived from dimethylamine) are more robust. It is these N-nitrosamines that are carcinogens in rodents.

Nitrosyl in inorganic chemistry

Linear and bent metal nitrosyls

Nitrosyls are non-organic compounds containing the NO group, for example directly bound to the metal via the N atom, giving a metal–NO moiety. Alternatively, a

anion
, NO:

NO + e → NO

Oxidation of NO yields the

cation
, NO+:

NO → NO+ + e

Nitric oxide can serve as a

metal nitrosyl complexes
or just metal nitrosyls. These complexes can be viewed as adducts of NO+, NO, or some intermediate case.

In human health

Nitroso compounds react with

oesophageal cancer risk today.[10][11][12][13]

For example, during the 1970s, certain Norwegian farm animals began exhibiting elevated levels of liver cancer. These animals had been fed herring meal preserved with sodium nitrite. The sodium nitrite had reacted with dimethylamine in the fish and produced dimethylnitrosamine.[14]

The effects of nitroso compounds vary dramatically across the gastrointestinal tract, and with diet. Nitroso compounds present in stool do not induce nitrosamine formation, because stool has neutral

vitamin C (ascorbic acid) concentration (e.g. high-fruit diet).[17][18][19] However, when 10% of the meal is fat, the effect reverses, and ascorbic acid markedly increases nitrosamine formation.[20][21]

See also

References