Aperiodic set of prototiles


A set of
A given set of tiles, in the Euclidean plane or some other geometric setting, admits a tiling if non-overlapping copies of the tiles in the set can be fitted together to cover the entire space. A given set of tiles might admit periodic tilings — that is, tilings that remain invariant after being shifted by a translation (for example, a lattice of square tiles is periodic). It is not difficult to design a set of tiles that admits non-periodic tilings as well as periodic tilings. (For example, randomly arranged tilings using a 2×2 square and 2×1 rectangle are typically non-periodic.)
However, an aperiodic set of tiles can only produce non-periodic tilings.[1][2] Infinitely many distinct tilings may be obtained from a single aperiodic set of tiles.[3]
The best-known examples of an aperiodic set of tiles are the various
History
Polygons are plane figures bounded by straight line segments. Regular polygons have all sides of equal length as well as all angles of equal measure. As early as AD 325, Pappus of Alexandria knew that only 3 types of regular polygons (the square, equilateral triangle, and hexagon) can fit perfectly together in repeating tessellations on a Euclidean plane. Within that plane, every triangle, irrespective of regularity, will tessellate. In contrast, regular pentagons do not tessellate. However, irregular pentagons, with different sides and angles can tessellate. There are 15 irregular convex pentagons that tile the plane.[6]
The second part of

Hence, when in 1966 Robert Berger found an aperiodic set of prototiles this demonstrated that the tiling problem is in fact not decidable.[8] (Thus Wang's procedures do not work on all tile sets, although that does not render them useless for practical purposes.) This first such set, used by Berger in his proof of undecidability, required 20,426 Wang tiles. Berger later reduced his set to 104, and Hans Läuchli subsequently found an aperiodic set requiring only 40 Wang tiles.[9] The set of 13 tiles given in the illustration on the right is an aperiodic set published by Karel Culik, II, in 1996.
However, a smaller aperiodic set, of six non-Wang tiles, was discovered by Raphael M. Robinson in 1971.[10] Roger Penrose discovered three more sets in 1973 and 1974, reducing the number of tiles needed to two, and Robert Ammann discovered several new sets in 1977. The question of whether an aperiodic set exists with only a single prototile is known as the einstein problem.
Constructions
There are few constructions of aperiodic tilings known, even forty years after Berger's groundbreaking construction. Some constructions are of infinite families of aperiodic sets of tiles.
There can be no aperiodic set of tiles in one dimension: it is a simple exercise to show that any set of tiles in the line either cannot be used to form a complete tiling, or can be used to form a periodic tiling. Aperiodicity of prototiles requires two or more dimensions.[citation needed]
References
- ISBN 978-0-521-57541-6.
- ISBN 978-0-7167-1194-0.
- ^ A set of aperiodic prototiles can always form uncountably many different tilings, even up to isometry, as proven by Nikolaï Dolbilin in his 1995 paper The Countability of a Tiling Family and the Periodicity of a Tiling
- .
- ISBN 978-0-7167-1987-8.
- ^ "Pentagon Tiling Proof Solves Century-Old Math Problem". 11 July 2017.
- ^ Senechal, pp 22–24.
- ^ Berger, Robert (1966). "The undecidability of the domino problem". Memoirs of the American Mathematical Society (66): 1–72.
- ^ Grünbaum and Shephard, section 11.1.
- S2CID 14259496.
- JSTOR 120988.
- S2CID 121775031.