Truncated order-4 apeirogonal tiling

Source: Wikipedia, the free encyclopedia.
Truncated order-4 apeirogonal tiling
Truncated order-4 apeirogonal tiling
Poincaré disk model of the hyperbolic plane
Type Hyperbolic uniform tiling
Vertex configuration 4.∞.∞
Schläfli symbol t{∞,4}
tr{∞,∞} or
Wythoff symbol 2 4 | ∞
2 ∞ ∞ |
Coxeter diagram
or
Symmetry group [∞,4], (*∞42)
[∞,∞], (*∞∞2)
Dual Infinite-order tetrakis square tiling
Properties
Vertex-transitive

In geometry, the truncated order-4 apeirogonal tiling is a uniform tiling of the hyperbolic plane. It has Schläfli symbol of t{∞,4}.

Uniform colorings

A half symmetry coloring is tr{∞,∞}, has two types of apeirogons, shown red and yellow here. If the apeirogonal curvature is too large, it doesn't converge to a single ideal point, like the right image, red apeirogons below.

ultraparallel
mirrors.



(Vertex centered)


(Square centered)

Symmetry

From [∞,∞] symmetry, there are 15 small index subgroup by mirror removal and alternation. Mirrors can be removed if its branch orders are all even, and cuts neighboring branch orders in half. Removing two mirrors leaves a half-order gyration point where the removed mirrors met. In these images fundamental domains are alternately colored black and white, and mirrors exist on the boundaries between colors. The symmetry can be doubled as

subgroup index-8 group, [1+,∞,1+,∞,1+] (∞∞∞∞) is the commutator subgroup
of [∞,∞].

Small index subgroups of [∞,∞] (*∞∞2)
Index
1 2 4
Diagram
Coxeter [∞,∞]
=
[1+,∞,∞]
=
[∞,∞,1+]
=
[∞,1+,∞]
=
[1+,∞,∞,1+]
=
[∞+,∞+]
Orbifold *∞∞2
*∞∞∞
*∞2∞2
*∞∞∞∞
∞∞×
Semidirect subgroups
Diagram
Coxeter [∞,∞+]
[∞+,∞]
[(∞,∞,2+)]
[∞,1+,∞,1+]
= =
= =
[1+,∞,1+,∞]
= =
= =
Orbifold ∞*∞ 2*∞∞ ∞*∞∞
Direct subgroups
Index 2 4 8
Diagram
Coxeter [∞,∞]+
=
[∞,∞+]+
=
[∞+,∞]+
=
[∞,1+,∞]+
=
[∞+,∞+]+ = [1+,∞,1+,∞,1+]
= = =
Orbifold ∞∞2 ∞∞∞ ∞2∞2 ∞∞∞∞
Radical subgroups
Index
Diagram
Coxeter [∞,∞*]
[∞*,∞]
[∞,∞*]+
[∞*,∞]+
Orbifold *∞
*n42 symmetry mutation of truncated tilings: 4.2n.2n
Symmetry
*n42
[n,4]
Spherical Euclidean Compact hyperbolic Paracomp.
*242
[2,4]
*342
[3,4]
*442
[4,4]
*542
[5,4]
*642
[6,4]
*742
[7,4]
*842
[8,4]...
*∞42
[∞,4]
Truncated
figures
Config. 4.4.4 4.6.6 4.8.8 4.10.10 4.12.12 4.14.14 4.16.16 4.∞.∞
n-kis
figures
Config.
V4.4.4
V4.6.6
V4.8.8 V4.10.10 V4.12.12 V4.14.14 V4.16.16 V4.∞.∞
Paracompact uniform tilings in [∞,4] family
{∞,4} t{∞,4} r{∞,4} 2t{∞,4}=t{4,∞} 2r{∞,4}={4,∞} rr{∞,4} tr{∞,4}
Dual figures
V∞4 V4.∞.∞ V(4.∞)2 V8.8.∞ V4 V43.∞ V4.8.∞
Alternations
[1+,∞,4]
(*44∞)
[∞+,4]
(∞*2)
[∞,1+,4]
(*2∞2∞)
[∞,4+]
(4*∞)
[∞,4,1+]
(*∞∞2)
[(∞,4,2+)]
(2*2∞)
[∞,4]+
(∞42)

=

=
h{∞,4} s{∞,4} hr{∞,4} s{4,∞} h{4,∞} hrr{∞,4} s{∞,4}
Alternation duals
V(∞.4)4 V3.(3.∞)2 V(4.∞.4)2 V3.∞.(3.4)2 V∞ V∞.44 V3.3.4.3.∞
Paracompact uniform tilings in [∞,∞] family

=
=

=
=

=
=

=
=

=
=

=

=
{∞,∞} t{∞,∞} r{∞,∞} 2t{∞,∞}=t{∞,∞} 2r{∞,∞}={∞,∞} rr{∞,∞} tr{∞,∞}
Dual tilings
V∞ V∞.∞.∞ V(∞.∞)2 V∞.∞.∞ V∞ V4.∞.4.∞ V4.4.∞
Alternations
[1+,∞,∞]
(*∞∞2)
[∞+,∞]
(∞*∞)
[∞,1+,∞]
(*∞∞∞∞)
[∞,∞+]
(∞*∞)
[∞,∞,1+]
(*∞∞2)
[(∞,∞,2+)]
(2*∞∞)
[∞,∞]+
(2∞∞)
h{∞,∞} s{∞,∞} hr{∞,∞} s{∞,∞} h2{∞,∞} hrr{∞,∞} sr{∞,∞}
Alternation duals
V(∞.∞) V(3.∞)3 V(∞.4)4 V(3.∞)3 V∞ V(4.∞.4)2 V3.3.∞.3.∞

See also

References