Domino tiling

Source: Wikipedia, the free encyclopedia.
A domino tiling of an 8×8 square

In

grid graph
formed by placing a vertex at the center of each square of the region and connecting two vertices when they correspond to adjacent squares.

Height functions

For some classes of tilings on a regular grid in two dimensions, it is possible to define a height function associating an integer to the vertices of the grid. For instance, draw a chessboard, fix a node with height 0, then for any node there is a path from to it. On this path define the height of each node (i.e. corners of the squares) to be the height of the previous node plus one if the square on the right of the path from to is black, and minus one otherwise.

More details can be found in Kenyon & Okounkov (2005).

Thurston's height condition

undirected graph that has as its vertices the points (x,y,z) in the three-dimensional integer lattice, where each such point is connected to four neighbors: if x + y is even, then (x,y,z) is connected to (x + 1,y,z + 1), (x − 1,y,z + 1), (x,y + 1,z − 1), and (x,y − 1,z − 1), while if x + y is odd, then (x,y,z) is connected to (x + 1,y,z − 1), (x − 1,y,z − 1), (x,y + 1,z + 1), and (x,y − 1,z + 1). The boundary of the region, viewed as a sequence of integer points in the (x,y) plane, lifts uniquely (once a starting height is chosen) to a path in this three-dimensional graph
. A necessary condition for this region to be tileable is that this path must close up to form a simple closed curve in three dimensions, however, this condition is not sufficient. Using more careful analysis of the boundary path, Thurston gave a criterion for tileability of a region that was sufficient as well as necessary.

Counting tilings of regions

A domino tiling of an 8×8 square using the minimum number of long-edge-to-long-edge pairs (1 pair in the center). This arrangement is also a valid Tatami tiling of an 8x8 square, with no four dominoes touching at an internal point.

The number of ways to cover an rectangle with dominoes, calculated independently by Temperley & Fisher (1961) and Kasteleyn (1961), is given by

(sequence A099390 in the OEIS)

When both m and n are odd, the formula correctly reduces to zero possible domino tilings.

A special case occurs when tiling the rectangle with n dominoes: the sequence reduces to the Fibonacci sequence.[1]

Another special case happens for squares with m = n = 0, 2, 4, 6, 8, 10, 12, ... is

1, 2, 36, 6728, 12988816, 258584046368, 53060477521960000, ... (sequence A004003 in the OEIS).

These numbers can be found by writing them as the Pfaffian of an

eigenvalues can be found explicitly. This technique may be applied in many mathematics-related subjects, for example, in the classical, 2-dimensional computation of the dimer-dimer correlator function in statistical mechanics
.

The number of tilings of a region is very sensitive to boundary conditions, and can change dramatically with apparently insignificant changes in the shape of the region. This is illustrated by the number of tilings of an

super-exponential growth
in n. For the "reduced Aztec diamond" of order n with only one long middle row, there is only one tiling.

  • An Aztec diamond of order 4, which has 1024 domino tilings
    An Aztec diamond of order 4, which has 1024 domino tilings
  • One possible tiling
    One possible tiling

Tatami

NP-complete.[3]

Applications in statistical physics

There is a one-to-one correspondence between a periodic domino tiling and a ground state configuration of the fully-frustrated Ising model on a two-dimensional periodic lattice.[4] To see that, we note that at the ground state, each plaquette of the spin model must contain exactly one frustrated interaction. Therefore, viewing from the dual lattice, each frustrated edge must be "covered" by a 1x2 rectangle, such that the rectangles span the entire lattice and do not overlap, or a domino tiling of the dual lattice.

See also

Notes

References

  • Barahona, Francisco (1982), "On the computational complexity of Ising spin glass models", Journal of Physics A: Mathematical and General, 15 (10): 3241–3253,
  • Erickson, Alejandro;
  • Kenyon, Richard; Okounkov, Andrei (2005), "What is ... a dimer?" (PDF), Notices of the American Mathematical Society, 52 (3): 342–343

Further reading