Order-6 square tiling
Order-6 square tiling | |
---|---|
![]() Poincaré disk model of the hyperbolic plane | |
Type | Hyperbolic regular tiling |
Vertex configuration | 46 |
Schläfli symbol | {4,6} |
Wythoff symbol | 6 | 4 2 |
Coxeter diagram | ![]() ![]() ![]() ![]() ![]() |
Symmetry group | [6,4], (*642) |
Dual | Order-4 hexagonal tiling |
Properties | face-transitive
|
In geometry, the order-6 square tiling is a regular tiling of the hyperbolic plane. It has Schläfli symbol of {4,6}.
Symmetry
This tiling represents a hyperbolic
This bicolored square tiling shows the even/odd reflective fundamental square domains of this symmetry. This bicolored tiling has a wythoff construction t1{(4,4,3)}. A second 6-color symmetry can be constructed from a hexagonal symmetry domain.
![]() |
![]() |
[4,6,1+] = [(4,4,3)] or (*443) symmetry![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
[4,6*] = (*222222) symmetry![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
---|
Example artwork
Around 1956,
The artwork seen below has an approximate hyperbolic mirror overlay added to show the square symmetry domains of the order-6 square tiling. If you look closely, you can see one of four angels and devils around each square are drawn as back sides. Without this variation, the art would have a 4-fold
Related polyhedra and tiling
This tiling is topologically related as a part of sequence of regular polyhedra and tilings with vertex figure (4n).
*n42 symmetry mutation of regular tilings: {4,n} | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Spherical | Euclidean | Compact hyperbolic | Paracompact | ||||||||
![]() {4,3} ![]() ![]() ![]() ![]() ![]() |
![]() {4,4} ![]() ![]() ![]() ![]() ![]() |
![]() {4,5} ![]() ![]() ![]() ![]() ![]() |
![]() {4,6} ![]() ![]() ![]() ![]() ![]() |
{4,7} ![]() ![]() ![]() ![]() ![]() |
{4,8} ...![]() ![]() ![]() ![]() ![]() |
![]() {4,∞} ![]() ![]() ![]() ![]() ![]() |
This tiling is topologically related as a part of sequence of regular tilings with order-6 vertices with





Regular tilings {n,6} | ||||||||
---|---|---|---|---|---|---|---|---|
Spherical | Euclidean
|
Hyperbolic tilings | ||||||
![]() {2,6} ![]() ![]() ![]() ![]() ![]() |
![]() {3,6} ![]() ![]() ![]() ![]() ![]() |
![]() {4,6} ![]() ![]() ![]() ![]() ![]() |
![]() {5,6} ![]() ![]() ![]() ![]() ![]() |
![]() {6,6} ![]() ![]() ![]() ![]() ![]() |
![]() {7,6} ![]() ![]() ![]() ![]() ![]() |
{8,6} ![]() ![]() ![]() ![]() ![]() |
... | ![]() {∞,6} ![]() ![]() ![]() ![]() ![]() |
Uniform tetrahexagonal tilings | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
[6,4], (*642 )(with [6,6] (*662), [(4,3,3)] (*443) , [∞,3,∞] (*3222) index 2 subsymmetries) (And [(∞,3,∞,3)] (*3232) index 4 subsymmetry) | |||||||||||
![]() ![]() ![]() ![]() ![]() = ![]() ![]() ![]() ![]() = ![]() ![]() ![]() = ![]() ![]() ![]() |
![]() ![]() ![]() ![]() ![]() = ![]() ![]() ![]() |
![]() ![]() ![]() ![]() ![]() = ![]() ![]() ![]() = ![]() ![]() ![]() ![]() = ![]() ![]() ![]() |
![]() ![]() ![]() ![]() ![]() ![]() = ![]() ![]() ![]() |
![]() ![]() ![]() ![]() ![]() ![]() = ![]() ![]() ![]() = ![]() ![]() ![]() = ![]() ![]() ![]() ![]() ![]() |
![]() ![]() ![]() ![]() ![]() ![]() ![]() = ![]() ![]() ![]() |
![]() ![]() ![]() ![]() ![]() | |||||
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() | |||||
{6,4} | t{6,4} | r{6,4} | t{4,6} | {4,6} | rr{6,4} | tr{6,4} | |||||
Uniform duals | |||||||||||
![]() ![]() ![]() ![]() ![]() |
![]() ![]() ![]() ![]() ![]() |
![]() ![]() ![]() ![]() ![]() |
![]() ![]() ![]() ![]() ![]() |
![]() ![]() ![]() ![]() ![]() |
![]() ![]() ![]() ![]() ![]() |
![]() ![]() ![]() ![]() ![]() | |||||
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() | |||||
V64 | V4.12.12 | V(4.6)2 | V6.8.8 | V46 | V4.4.4.6 | V4.8.12 | |||||
Alternations | |||||||||||
[1+,6,4] (*443) |
[6+,4] (6*2) |
[6,1+,4] (*3222) |
[6,4+] (4*3) |
[6,4,1+] (*662) |
[(6,4,2+)] (2*32) |
[6,4]+ (642) | |||||
![]() ![]() ![]() ![]() ![]() = ![]() ![]() ![]() |
![]() ![]() ![]() ![]() ![]() = ![]() ![]() ![]() ![]() |
![]() ![]() ![]() ![]() ![]() = ![]() ![]() ![]() |
![]() ![]() ![]() ![]() ![]() = ![]() ![]() ![]() |
![]() ![]() ![]() ![]() ![]() = ![]() ![]() ![]() |
![]() ![]() ![]() ![]() ![]() = ![]() ![]() ![]() ![]() |
![]() ![]() ![]() ![]() ![]() | |||||
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() | |||||
h{6,4} | s{6,4} | hr{6,4} | s{4,6} | h{4,6} | hrr{6,4} | sr{6,4} |
Uniform (4,4,3) tilings | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|
Symmetry: [(4,4,3)] (*443)
|
[(4,4,3)]+ (443) |
[(4,4,3+)] (3*22) |
[(4,1+,4,3)] (*3232) | |||||||
![]() ![]() ![]() |
![]() ![]() ![]() |
![]() ![]() ![]() |
![]() ![]() ![]() |
![]() ![]() ![]() |
![]() ![]() ![]() |
![]() ![]() ![]() |
![]() ![]() ![]() |
![]() ![]() ![]() |
![]() ![]() ![]() |
![]() ![]() ![]() |
![]() ![]() ![]() ![]() ![]() |
![]() ![]() ![]() ![]() ![]() |
![]() ![]() ![]() ![]() ![]() |
![]() ![]() ![]() ![]() ![]() |
![]() ![]() ![]() ![]() ![]() |
![]() ![]() ![]() ![]() ![]() |
![]() ![]() ![]() ![]() ![]() |
![]() ![]() ![]() ![]() ![]() |
![]() ![]() ![]() ![]() ![]() |
![]() ![]() ![]() ![]() ![]() |
![]() ![]() ![]() ![]() ![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
h{6,4} t0(4,4,3) |
h2{6,4} t0,1(4,4,3) |
{4,6}1/2 t1(4,4,3) |
h2{6,4} t1,2(4,4,3) |
h{6,4} t2(4,4,3) |
r{6,4}1/2 t0,2(4,4,3) |
t{4,6}1/2 t0,1,2(4,4,3) |
s{4,6}1/2 s(4,4,3) |
hr{4,6}1/2 hr(4,3,4) |
h{4,6}1/2 h(4,3,4) |
q{4,6} h1(4,3,4) |
Uniform duals | ||||||||||
![]() |
![]() |
![]() |
![]() |
|||||||
V(3.4)4 | V3.8.4.8 | V(4.4)3 | V3.8.4.8 | V(3.4)4 | V4.6.4.6 | V6.8.8 | V3.3.3.4.3.4 | V(4.4.3)2 | V66 | V4.3.4.6.6 |
Uniform tilings in symmetry *3222 | ||||
---|---|---|---|---|
![]() ![]() ![]() ![]() |
![]() ![]() ![]() ![]() |
![]() ![]() ![]() ![]() |
![]() ![]() ![]() ![]() | |
![]() ![]() ![]() ![]() |
![]() ![]() ![]() ![]() |
![]() ![]() ![]() ![]() | ||
![]() ![]() ![]() ![]() |
![]() ![]() ![]() ![]() |
![]() ![]() ![]() ![]() |
See also
References
- ^ Conway, The Symmetry of Things (2008), p.224, Figure 17.4, Circle Limit IV Archived 2012-07-17 at the Wayback Machine
- ISBN 978-1-56881-220-5(Chapter 19, The Hyperbolic Archimedean Tessellations)
- "Chapter 10: Regular honeycombs in hyperbolic space". The Beauty of Geometry: Twelve Essays. Dover Publications. 1999. LCCN 99035678.
External links
- Weisstein, Eric W. "Hyperbolic tiling". MathWorld.
- Weisstein, Eric W. "Poincaré hyperbolic disk". MathWorld.
- Hyperbolic and Spherical Tiling Gallery
- KaleidoTile 3: Educational software to create spherical, planar and hyperbolic tilings
- Hyperbolic Planar Tessellations, Don Hatch
- GenusView 0.4 preview View of {4,6} hyperbolic tiling, and matching 3D torus surface.