Snub square tiling

Source: Wikipedia, the free encyclopedia.
Snub square tiling
Snub square tiling
Type
Semiregular tiling
Vertex configuration
3.3.4.3.4
Schläfli symbol s{4,4}
sr{4,4} or
Wythoff symbol | 4 4 2
Coxeter diagram
or
Symmetry
p4g
, [4+,4], (4*2)
Rotation symmetry
p4
, [4,4]+, (442)
Bowers acronym Snasquat
Dual Cairo pentagonal tiling
Properties
Vertex-transitive

In

semiregular tiling of the Euclidean plane. There are three triangles and two squares on each vertex. Its Schläfli symbol
is s{4,4}.

Conway calls it a snub quadrille, constructed by a snub operation applied to a square tiling (quadrille).

There are 3

semiregular tilings
in the plane.

Uniform colorings

There are two distinct uniform colorings of a snub square tiling. (Naming the colors by indices around a vertex (3.3.4.3.4): 11212, 11213.)

Coloring
11212

11213
Symmetry 4*2, [4+,4], (p4g) 442, [4,4]+, (p4)
Schläfli symbol s{4,4} sr{4,4}
Wythoff symbol   | 4 4 2
Coxeter diagram

Circle packing

The snub square tiling can be used as a circle packing, placing equal diameter circles at the center of every point. Every circle is in contact with 5 other circles in the packing (kissing number).[1]

Wythoff construction

The snub square tiling can be constructed as a snub operation from the square tiling, or as an alternate truncation from the truncated square tiling.

An alternate truncation deletes every other vertex, creating a new triangular faces at the removed vertices, and reduces the original faces to half as many sides. In this case starting with a truncated square tiling with 2

square
per vertex, the octagon faces into squares, and the square faces degenerate into edges and 2 new triangles appear at the truncated vertices around the original square.

If the original tiling is made of regular faces the new triangles will be isosceles. Starting with octagons which alternate long and short edge lengths, derived from a regular dodecagon, will produce a snub tiling with perfect equilateral triangle faces.

Example:


Regular octagons alternately truncated
(Alternate
truncation)

Isosceles triangles (Nonuniform tiling)

Nonregular octagons alternately truncated
(Alternate
truncation)

Equilateral triangles

Related tilings

  • A snub operator applied twice to the square tiling, while it doesn't have regular faces, is made of square with irregular triangles and pentagons.
    A
    snub operator
    applied twice to the square tiling, while it doesn't have regular faces, is made of square with irregular triangles and pentagons.
  • A related isogonal tiling that combines pairs of triangles into rhombi
    A related
    isogonal tiling
    that combines pairs of triangles into rhombi
  • A 2-isogonal tiling can be made by combining 2 squares and 3 triangles into heptagons.
    A 2-isogonal tiling can be made by combining 2 squares and 3 triangles into heptagons.
  • The Cairo pentagonal tiling is dual to the snub square tiling.
    The Cairo pentagonal tiling is dual to the snub square tiling.

Related k-uniform tilings

This tiling is related to the

k-uniform tilings.[2][3]

Related tilings of triangles and squares
snub square elongated triangular 2-uniform 3-uniform
p4g, (4*2) p2, (2222) p2, (2222) cmm, (2*22) p2, (2222)

[32434]

[3342]

[3342; 32434]

[3342; 32434]

[2: 3342; 32434]

[3342; 2: 32434]

Related topological series of polyhedra and tiling

The snub square tiling is third in a series of snub polyhedra and tilings with vertex figure 3.3.4.3.n.

4n2 symmetry mutations of snub tilings: 3.3.4.3.n
Symmetry
4n2
Spherical Euclidean Compact hyperbolic Paracomp.
242 342 442 542 642 742 842 ∞42
Snub
figures
Config. 3.3.4.3.2 3.3.4.3.3 3.3.4.3.4 3.3.4.3.5 3.3.4.3.6 3.3.4.3.7 3.3.4.3.8
3.3.4.3.∞
Gyro
figures
Config.
V3.3.4.3.2 V3.3.4.3.3 V3.3.4.3.4
V3.3.4.3.5
V3.3.4.3.6 V3.3.4.3.7 V3.3.4.3.8 V3.3.4.3.∞

The snub square tiling is third in a series of snub polyhedra and tilings with vertex figure 3.3.n.3.n.

4n2 symmetry mutations of snub tilings: 3.3.n.3.n
Symmetry
4n2
Spherical Euclidean Compact hyperbolic Paracompact
222 322 442 552 662 772 882 ∞∞2
Snub
figures
Config. 3.3.2.3.2
3.3.3.3.3
3.3.4.3.4 3.3.5.3.5 3.3.6.3.6 3.3.7.3.7 3.3.8.3.8 3.3.∞.3.∞
Gyro
figures
Config.
V3.3.2.3.2
V3.3.3.3.3
V3.3.4.3.4 V3.3.5.3.5 V3.3.6.3.6 V3.3.7.3.7 V3.3.8.3.8 V3.3.∞.3.∞
Uniform tilings based on square tiling symmetry
Symmetry: [4,4], (*442) [4,4]+, (442) [4,4+], (4*2)
{4,4} t{4,4} r{4,4} t{4,4} {4,4} rr{4,4} tr{4,4} sr{4,4} s{4,4}
Uniform duals
V4.4.4.4 V4.8.8 V4.4.4.4 V4.8.8 V4.4.4.4 V4.4.4.4 V4.8.8 V3.3.4.3.4

See also

References

  1. ^ Order in Space: A design source book, Keith Critchlow, p.74-75, circle pattern C
  2. .
  3. ^ "Uniform Tilings". Archived from the original on 2006-09-09. Retrieved 2006-09-09.

External links