Truncated order-8 octagonal tiling
Appearance
Truncated order-8 octagonal tiling | |
---|---|
![]() Poincaré disk model of the hyperbolic plane | |
Type | Hyperbolic uniform tiling |
Vertex configuration | 8.16.16 |
Schläfli symbol | t{8,8} t(8,8,4) |
Wythoff symbol | 2 8 | 4 |
Coxeter diagram | ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Symmetry group | [8,8], (*882) [(8,8,4)], (*884) |
Dual | Order-8 octakis octagonal tiling |
Properties | Vertex-transitive
|
In geometry, the truncated order-8 octagonal tiling is a uniform tiling of the hyperbolic plane. It has Schläfli symbol of t0,1{8,8}.
Uniform colorings
This tiling can also be constructed in *884 symmetry with 3 colors of faces:
Related polyhedra and tiling
Uniform octaoctagonal tilings
| |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Symmetry: [8,8], (*882)
| |||||||||||
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() = ![]() ![]() ![]() ![]() ![]() |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() = ![]() ![]() ![]() ![]() ![]() |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() = ![]() ![]() ![]() ![]() ![]() |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() = ![]() ![]() ![]() ![]() ![]() |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() = ![]() ![]() ![]() ![]() ![]() |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() = ![]() ![]() ![]() ![]() ![]() |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() = ![]() ![]() ![]() ![]() ![]() | |||||
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() | |||||
{8,8}
|
t{8,8} |
r{8,8} | 2t{8,8}=t{8,8} | 2r{8,8}={8,8}
|
rr{8,8} | tr{8,8} | |||||
Uniform duals | |||||||||||
![]() ![]() ![]() ![]() ![]() |
![]() ![]() ![]() ![]() ![]() |
![]() ![]() ![]() ![]() ![]() |
![]() ![]() ![]() ![]() ![]() |
![]() ![]() ![]() ![]() ![]() |
![]() ![]() ![]() ![]() ![]() |
![]() ![]() ![]() ![]() ![]() | |||||
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() | |||||
V88
|
V8.16.16 | V8.8.8.8
|
V8.16.16 | V88
|
V4.8.4.8 | V4.16.16 | |||||
Alternations | |||||||||||
[1+,8,8] (*884) |
[8+,8] (8*4) |
[8,1+,8] (*4242) |
[8,8+] (8*4) |
[8,8,1+] (*884) |
[(8,8,2+)] (2*44) |
[8,8]+ (882) | |||||
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
![]() ![]() ![]() ![]() ![]() |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
![]() ![]() ![]() ![]() ![]() |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() = ![]() ![]() ![]() ![]() ![]() |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() = ![]() ![]() ![]() ![]() ![]() | |||||
![]() |
![]() |
![]() |
![]() |
![]() | |||||||
h{8,8} | s{8,8} | hr{8,8}
|
s{8,8} | h{8,8} | hrr{8,8} | sr{8,8} | |||||
Alternation duals | |||||||||||
![]() ![]() ![]() ![]() ![]() |
![]() ![]() ![]() ![]() ![]() |
![]() ![]() ![]() ![]() ![]() |
![]() ![]() ![]() ![]() ![]() |
![]() ![]() ![]() ![]() ![]() |
![]() ![]() ![]() ![]() ![]() |
![]() ![]() ![]() ![]() ![]() | |||||
![]() |
![]() |
||||||||||
V(4.8)8 | V3.4.3.8.3.8 | V(4.4)4 | V3.4.3.8.3.8 | V(4.8)8 | V46 | V3.3.8.3.8 |
Symmetry
The dual of the tiling represents the fundamental domains of (*884)
subgroup index-8 group, [(1+,8,1+,8,1+,4)] (442442) is the commutator subgroup
of [(8,8,4)].
Fundamental domains |
![]() |
![]() ![]() |
![]() ![]() |
![]() ![]() |
![]() ![]() |
![]() | ||
---|---|---|---|---|---|---|---|---|
Subgroup index | 1 | 2 | 4 | |||||
Coxeter | [(8,8,4)]![]() ![]() ![]() ![]() |
[(1+,8,8,4)]![]() ![]() ![]() ![]() |
[(8,8,1+,4)]![]() ![]() ![]() ![]() |
[(8,1+,8,4)]![]() ![]() ![]() ![]() ![]() |
[(1+,8,8,1+,4)]![]() ![]() ![]() ![]() ![]() |
[(8+,8+,4)]![]() ![]() ![]() ![]() | ||
orbifold | *884 | *8482 | *4444
|
2*4444 | 442× | |||
Coxeter | [(8,8+,4)]![]() ![]() ![]() ![]() |
[(8+,8,4)]![]() ![]() ![]() ![]() |
[(8,8,4+)]![]() ![]() ![]() ![]() |
[(8,1+,8,1+,4)]![]() ![]() ![]() ![]() ![]() |
[(1+,8,1+,8,4)]![]() ![]() ![]() ![]() | |||
Orbifold | 8*42 | 4*44 | 4*4242 | |||||
Direct subgroups | ||||||||
Subgroup index | 2 | 4 | 8 | |||||
Coxeter | [(8,8,4)]+![]() ![]() ![]() ![]() |
[(1+,8,8+,4)]![]() ![]() ![]() ![]() |
[(8+,8,1+,4)]![]() ![]() ![]() ![]() |
[(8,1+,8,4+)]![]() ![]() ![]() ![]() ![]() |
[(1+,8,1+,8,1+,4)] = [(8+,8+,4+)]![]() ![]() ![]() ![]() | |||
Orbifold | 844 | 8482 | 4444 | 442442 |
References
- ISBN 978-1-56881-220-5(Chapter 19, The Hyperbolic Archimedean Tessellations)
- "Chapter 10: Regular honeycombs in hyperbolic space". The Beauty of Geometry: Twelve Essays. Dover Publications. 1999. LCCN 99035678.
See also
- Square tiling
- Tilings of regular polygons
- List of uniform planar tilings
- List of regular polytopes