Voronoi diagram

Source: Wikipedia, the free encyclopedia.
20 points and their Voronoi cells (larger version below)

In

region, called a Voronoi cell, consisting of all points of the plane closer to that seed than to any other. The Voronoi diagram of a set of points is dual to that set's Delaunay triangulation
.

The Voronoi diagram is named after mathematician

The simplest case

In the simplest case, shown in the first picture, we are given a finite set of points in the Euclidean plane. In this case each site is one of these given points, and its corresponding Voronoi cell consists of every point in the Euclidean plane for which is the nearest site: the distance to is less than or equal to the minimum distance to any other site . For one other site , the points that are closer to than to , or equally distant, form a

perpendicular bisector
of line segment . Cell is the intersection of all of these half-spaces, and hence it is a
ray, or line, consisting of all the points in the plane that are equidistant to their two nearest sites. The vertices
of the diagram, where three or more of these boundaries meet, are the points that have three or more equally distant nearest sites.

Formal definition

Let be a metric space with distance function . Let be a set of indices and let be a

subsets
(the sites) in the space . The Voronoi cell, or Voronoi region, , associated with the site is the set of all points in whose distance to is not greater than their distance to the other sites , where is any index different from . In other words, if denotes the distance between the point and the subset , then

The Voronoi diagram is simply the tuple of cells . In principle, some of the sites can intersect and even coincide (an application is described below for sites representing shops), but usually they are assumed to be disjoint. In addition, infinitely many sites are allowed in the definition (this setting has applications in geometry of numbers and crystallography), but again, in many cases only finitely many sites are considered.

In the particular case where the space is a

finite-dimensional Euclidean space, each site is a point, there are finitely many points and all of them are different, then the Voronoi cells are convex polytopes
and they can be represented in a combinatorial way using their vertices, sides, two-dimensional faces, etc. Sometimes the induced combinatorial structure is referred to as the Voronoi diagram. In general however, the Voronoi cells may not be convex or even connected.

In the usual Euclidean space, we can rewrite the formal definition in usual terms. Each Voronoi polygon is associated with a generator point . Let be the set of all points in the Euclidean space. Let be a point that generates its Voronoi region , that generates , and that generates , and so on. Then, as expressed by Tran et al,[7] "all locations in the Voronoi polygon are closer to the generator point of that polygon than any other generator point in the Voronoi diagram in Euclidean plane".

Illustration

As a simple illustration, consider a group of shops in a city. Suppose we want to estimate the number of customers of a given shop. With all else being equal (price, products, quality of service, etc.), it is reasonable to assume that customers choose their preferred shop simply by distance considerations: they will go to the shop located nearest to them. In this case the Voronoi cell of a given shop can be used for giving a rough estimate on the number of potential customers going to this shop (which is modeled by a point in our city).

For most cities, the distance between points can be measured using the familiar Euclidean distance:

or the

Manhattan distance
:

.

The corresponding Voronoi diagrams look different for different distance metrics.

Voronoi diagrams of 20 points under two different metrics
Manhattan distance

Properties

History and research

Informal use of Voronoi diagrams can be traced back to

used two-dimensional and three-dimensional Voronoi diagrams in his study of quadratic forms in 1850. British physician
John Snow used a Voronoi-like diagram in 1854 to illustrate how the majority of people who died in the Broad Street cholera outbreak lived closer to the infected Broad Street pump
than to any other water pump.

Voronoi diagrams are named after Georgy Feodosievych Voronoy who defined and studied the general n-dimensional case in 1908.[11] Voronoi diagrams that are used in geophysics and meteorology to analyse spatially distributed data are called Thiessen polygons after American meteorologist Alfred H. Thiessen, who used them to estimate rainfall from scattered measurements in 1911. Other equivalent names for this concept (or particular important cases of it): Voronoi polyhedra, Voronoi polygons, domain(s) of influence, Voronoi decomposition, Voronoi tessellation(s), Dirichlet tessellation(s).

Examples

This is a slice of the Voronoi diagram of a random set of points in a 3D box. In general, a cross section of a 3D Voronoi tessellation is a power diagram, a weighted form of a 2d Voronoi diagram, rather than being an unweighted Voronoi diagram.

Voronoi tessellations of regular lattices of points in two or three dimensions give rise to many familiar tessellations.

Certain body-centered tetragonal lattices give a tessellation of space with

rhombo-hexagonal dodecahedra
.

For the set of points (xy) with x in a discrete set X and y in a discrete set Y, we get rectangular tiles with the points not necessarily at their centers.

Higher-order Voronoi diagrams

Although a normal Voronoi cell is defined as the set of points closest to a single point in S, an nth-order Voronoi cell is defined as the set of points having a particular set of n points in S as its n nearest neighbors. Higher-order Voronoi diagrams also subdivide space.

Higher-order Voronoi diagrams can be generated recursively. To generate the nth-order Voronoi diagram from set S, start with the (n − 1)th-order diagram and replace each cell generated by X = {x1x2, ..., xn−1} with a Voronoi diagram generated on the set S − X.

Farthest-point Voronoi diagram

For a set of n points the (n − 1)th-order Voronoi diagram is called a farthest-point Voronoi diagram.

For a given set of points S = {p1p2, ..., pn} the farthest-point Voronoi diagram divides the plane into cells in which the same point of P is the farthest point. A point of P has a cell in the farthest-point Voronoi diagram if and only if it is a vertex of the convex hull of P. Let H = {h1h2, ..., hk} be the convex hull of P; then the farthest-point Voronoi diagram is a subdivision of the plane into k cells, one for each point in H, with the property that a point q lies in the cell corresponding to a site hi if and only if d(q, hi) > d(q, pj) for each pj ∈ S with hipj, where d(p, q) is the Euclidean distance between two points p and q.[12][13]

The boundaries of the cells in the farthest-point Voronoi diagram have the structure of a

rays as its leaves. Every finite tree is isomorphic to the tree formed in this way from a farthest-point Voronoi diagram.[14]

Generalizations and variations

As implied by the definition, Voronoi cells can be defined for metrics other than Euclidean, such as the

Manhattan distance
. However, in these cases the boundaries of the Voronoi cells may be more complicated than in the Euclidean case, since the equidistant locus for two points may fail to be subspace of codimension 1, even in the two-dimensional case.

Approximate Voronoi diagram of a set of points. Notice the blended colors in the fuzzy boundary of the Voronoi cells.

A

squared Euclidean distance from the circle's center.[15]

The Voronoi diagram of points in -dimensional space can have vertices, requiring the same bound for the amount of memory needed to store an explicit description of it. Therefore, Voronoi diagrams are often not feasible for moderate or high dimensions. A more space-efficient alternative is to use approximate Voronoi diagrams.[16]

Voronoi diagrams are also related to other geometric structures such as the medial axis (which has found applications in image segmentation, optical character recognition, and other computational applications), straight skeleton, and zone diagrams.

Applications

Meteorology/Hydrology

It is used in meteorology and engineering hydrology to find the weights for precipitation data of stations over an area (watershed). The points generating the polygons are the various station that record precipitation data. Perpendicular bisectors are drawn to the line joining any two stations. This results in the formation of polygons around the stations. The area touching station point is known as influence area of the station. The average precipitation is calculated by the formula

Humanities and social sciences

  • In classical archaeology, specifically art history, the symmetry of statue heads is analyzed to determine the type of statue a severed head may have belonged to. An example of this that made use of Voronoi cells was the identification of the Sabouroff head, which made use of a high-resolution polygon mesh.[17][18]
  • In dialectometry, Voronoi cells are used to indicate a supposed linguistic continuity between survey points.
  • In political science, Voronoi diagrams have been used to study multi-dimensional, multi-party competition.[19]

Natural sciences

A Voronoi tessellation emerges by radial growth from seeds outward.
  • In
    bone microarchitecture.[21] Indeed, Voronoi tessellations work as a geometrical tool to understand the physical constraints that drive the organization of biological tissues.[22]
  • In hydrology, Voronoi diagrams are used to calculate the rainfall of an area, based on a series of point measurements. In this usage, they are generally referred to as Thiessen polygons.
  • In ecology, Voronoi diagrams are used to study the growth patterns of forests and forest canopies, and may also be helpful in developing predictive models for forest fires.
  • In ethology, Voronoi diagrams are used to model domains of danger in the selfish herd theory.
  • In computational chemistry, ligand-binding sites are transformed into Voronoi diagrams for machine learning applications (e.g., to classify binding pockets in proteins).[23] In other applications, Voronoi cells defined by the positions of the nuclei in a molecule are used to compute atomic charges. This is done using the Voronoi deformation density method.
  • In astrophysics, Voronoi diagrams are used to generate adaptative smoothing zones on images, adding signal fluxes on each one. The main objective of these procedures is to maintain a relatively constant signal-to-noise ratio on all the images.
  • In
    finite volume methods, e.g. as in the moving-mesh cosmology code AREPO.[24]
  • In computational physics, Voronoi diagrams are used to calculate profiles of an object with Shadowgraph and proton radiography in High energy density physics.[25]

Health

  • In medical diagnosis, models of muscle tissue, based on Voronoi diagrams, can be used to detect neuromuscular diseases.[22]
  • In
    John Snow to study the 1854 Broad Street cholera outbreak in Soho, England. He showed the correlation between residential areas on the map of Central London whose residents had been using a specific water pump, and the areas with the most deaths due to the outbreak.[26]

Engineering

Mathematics

Informatics

Civics and planning

  • In Melbourne, government school students are always eligible to attend the nearest primary school or high school to where they live, as measured by a straight-line distance. The map of school zones is therefore a Voronoi diagram.[42]

Bakery

  • Ukrainian pastry chef Dinara Kasko uses the mathematical principles of the Voronoi diagram to create silicone molds made with a 3D printer to shape her original cakes.[43]

Algorithms

Several efficient algorithms are known for constructing Voronoi diagrams, either directly (as the diagram itself) or indirectly by starting with a Delaunay triangulation and then obtaining its dual. Direct algorithms include Fortune's algorithm, an O(n log(n)) algorithm for generating a Voronoi diagram from a set of points in a plane. Bowyer–Watson algorithm, an O(n log(n)) to O(n2) algorithm for generating a Delaunay triangulation in any number of dimensions, can be used in an indirect algorithm for the Voronoi diagram. The Jump Flooding Algorithm can generate approximate Voronoi diagrams in constant time and is suited for use on commodity graphics hardware.[44][45]

Lloyd's algorithm and its generalization via the Linde–Buzo–Gray algorithm (aka k-means clustering), use the construction of Voronoi diagrams as a subroutine. These methods alternate between steps in which one constructs the Voronoi diagram for a set of seed points, and steps in which the seed points are moved to new locations that are more central within their cells. These methods can be used in spaces of arbitrary dimension to iteratively converge towards a specialized form of the Voronoi diagram, called a Centroidal Voronoi tessellation, where the sites have been moved to points that are also the geometric centers of their cells.

Voronoi in 3D

Voronoi meshes can also be generated in 3D.

  • Random points in 3D for forming a 3D Voronoi partition
    Random points in 3D for forming a 3D Voronoi partition
  • 3D Voronoi mesh of 25 random points
    3D Voronoi mesh of 25 random points
  • 3D Voronoi mesh of 25 random points with 0.3 opacity and points
    3D Voronoi mesh of 25 random points with 0.3 opacity and points
  • 3D Voronoi mesh of 25 random points convex polyhedra pieces
    3D Voronoi mesh of 25 random points convex polyhedra pieces

See also

Notes

  1. .
  2. .
  3. .
  4. .
  5. .
  6. ^ Boyd, Stephen; Vandenberghe, Lieven (2004). Convex Optimization. Exercise 2.9: Cambridge University Press. p. 60.{{cite book}}: CS1 maint: location (link)
  7. .
  8. ^ Reem 2009.
  9. ^ Reem 2011.
  10. PMID 17806355
    .
  11. ^ Voronoï 1908a and Voronoï 1908b.
  12. ^ . 7.4 Farthest-Point Voronoi Diagrams. Includes a description of the algorithm.
  13. ., contains a simple algorithm to compute the farthest-point Voronoi diagram.
  14. ^ Biedl, Therese; Grimm, Carsten; Palios, Leonidas; Shewchuk, Jonathan; Verdonschot, Sander (2016). "Realizing farthest-point Voronoi diagrams". Proceedings of the 28th Canadian Conference on Computational Geometry (CCCG 2016).
  15. .
  16. .
  17. ^ Hölscher, Tonio; Krömker, Susanne; Mara, Hubert (2020). "Der Kopf Sabouroff in Berlin: Zwischen archäologischer Beobachtung und geometrischer Vermessung". Gedenkschrift für Georgios Despinis (in German). Athens, Greece: Benaki Museum.
  18. YouTube
    . Analysis using the GigaMesh Software Framework as described by Hölscher et al. cf. doi:10.11588/heidok.00027985.
  19. .
  20. .
  21. .
  22. ^ .
  23. . Retrieved 2021-04-23.
  24. .
  25. .
  26. . Retrieved 16 October 2017.
  27. .
  28. .
  29. .
  30. .
  31. .
  32. ^ "GOLD COAST CULTURAL PRECINCT". ARM Architecture. Archived from the original on 2016-07-07. Retrieved 2014-04-28.
  33. ^ Lopez, C.; Zhao, C.-L.; Magniol, S; Chiabaut, N; Leclercq, L (28 February 2019). "Microscopic Simulation of Cruising for Parking of Trucks as a Measure to Manage Freight Loading Zone". Sustainability. 11 (5), 1276.
  34. S2CID 202213370
    .
  35. .
  36. .
  37. .
  38. ^ Pólya, G. On the zeros of the derivatives of a function and its analytic character. Bulletin of the AMS, Volume 49, Issue 3, 178-191, 1943.
  39. .
  40. ^ Shenwai, Tanushree (2021-11-18). "A Novel Deep Learning Technique That Rebuilds Global Fields Without Using Organized Sensor Data". MarkTechPost. Retrieved 2021-12-05.
  41. ^ Archived at Ghostarchive and the Wayback Machine: "Mark DiMarco: User Interface Algorithms [JSConf2014]" – via www.youtube.com.
  42. ^ "Find my School". Victorian Government Department of Education. Retrieved 2023-07-25.
  43. ^ Haridy, Rich (2017-09-06). "Architect turned cake-maker serves up mouth-watering geometric 3D-printed cakes". New Atlas.
  44. .
  45. ^ "Shadertoy".

References

External links