Truncated trioctagonal tiling

Source: Wikipedia, the free encyclopedia.
Truncated trioctagonal tiling
Truncated trioctagonal tiling
Poincaré disk model of the hyperbolic plane
Type Hyperbolic uniform tiling
Vertex configuration 4.6.16
Schläfli symbol tr{8,3} or
Wythoff symbol 2 8 3 |
Coxeter diagram or
Symmetry group [8,3], (*832)
Dual
Order 3-8 kisrhombille
Properties
Vertex-transitive

In

square, one hexagon, and one hexadecagon (16-sides) on each vertex. It has Schläfli symbol
of tr{8,3}.

Symmetry

Truncated trioctagonal tiling with mirror lines

The dual of this tiling, the order 3-8 kisrhombille, represents the fundamental domains of [8,3] (*832) symmetry. There are 3 small index subgroups constructed from [8,3] by mirror removal and alternation. In these images fundamental domains are alternately colored black and white, and mirrors exist on the boundaries between colors.

A larger index 6 subgroup constructed as [8,3*], becomes [(4,4,4)], (*444). An intermediate index 3 subgroup is constructed as [8,3], with 2/3 of blue mirrors removed.

Small index subgroups of [8,3], (*832)
Index
1 2 3 6
Diagrams
Coxeter
(orbifold)
[8,3] =
(*832)
[1+,8,3] = =
(
*433
)
[8,3+] =
(3*4)
[8,3] = =
(
*842
)
[8,3*] = =
(
*444
)
Direct subgroups
Index 2 4 6 12
Diagrams
Coxeter
(orbifold)
[8,3]+ =
(832)
[8,3+]+ = =
(433)
[8,3]+ = =
(842)
[8,3*]+ = =
(444)

Order 3-8 kisrhombille

Truncated trioctagonal tiling
face-transitive

The order 3-8 kisrhombille is a

semiregular dual tiling of the hyperbolic plane. It is constructed by congruent right triangles with 4, 6, and 16 triangles meeting at each vertex
.

The image shows a Poincaré disk model projection of the hyperbolic plane.

It is labeled V4.6.16 because each right triangle face has three types of vertices: one with 4 triangles, one with 6 triangles, and one with 16 triangles. It is the

dual tessellation
of the truncated trioctagonal tiling which has one square and one octagon and one hexakaidecagon at each vertex.

Naming

An alternative name is 3-8 kisrhombille by

kis
operator, adding a center point to each rhombus, and dividing into four triangles.

Related polyhedra and tilings

This tiling is one of 10 uniform tilings constructed from [8,3] hyperbolic symmetry and three subsymmetries [1+,8,3], [8,3+] and [8,3]+.

Uniform octagonal/triangular tilings
Symmetry:
[8,3], (*832)
[8,3]+
(832)
[1+,8,3]
(*443)
[8,3+]
(3*4)
{8,3} t{8,3} r{8,3} t{3,8} {3,8} rr{8,3}
s2{3,8}
tr{8,3} sr{8,3} h{8,3} h2{8,3} s{3,8}




or

or





Uniform duals
V83 V3.16.16 V3.8.3.8 V6.6.8 V38 V3.4.8.4
V4.6.16
V34.8 V(3.4)3 V8.6.6 V35.4

This tiling can be considered a member of a sequence of uniform patterns with vertex figure (4.6.2p) and

omnitruncated polyhedra (zonohedrons), shown below as spherical tilings. For p > 6, they are tilings of the hyperbolic plane, starting with the truncated triheptagonal tiling
.

*n32 symmetry mutation of omnitruncated tilings: 4.6.2n
Sym.
*n32
[n,3]
Spherical Euclid. Compact hyperb. Paraco. Noncompact hyperbolic
*232
[2,3]
*332
[3,3]
*432
[4,3]
*532
[5,3]
*632
[6,3]
*732
[7,3]
*832
[8,3]
*∞32
[∞,3]
 
[12i,3]
 
[9i,3]
 
[6i,3]
 
[3i,3]
Figures
Config. 4.6.4 4.6.6 4.6.8 4.6.10 4.6.12 4.6.14 4.6.16 4.6.∞ 4.6.24i 4.6.18i 4.6.12i 4.6.6i
Duals
Config.
V4.6.4 V4.6.6 V4.6.8 V4.6.10
V4.6.12
V4.6.14
V4.6.16
V4.6.∞ V4.6.24i V4.6.18i V4.6.12i V4.6.6i

See also

References

External links