Cordite

Source: Wikipedia, the free encyclopedia.

A stick of cordite from World War II
A sectioned British 18-pounder field gun shrapnel round, World War I, with bound string to simulate the appearance of the original cordite propellant
Close-up of cordite filaments in a .303 British Rifle cartridge (manufactured in 1964)
Burning a strand of cordite from a .303 British round

Cordite is a family of

high explosives [not verified in body]. The hot gases produced by burning gunpowder or cordite generate sufficient pressure to propel a bullet or shell to its target, but not so quickly as to routinely destroy the barrel of the gun. [not verified in body
]

Cordite was used initially in the .303 British, Mark I and II, standard rifle cartridge between 1891 and 1915.[not verified in body] Shortages of cordite in World War I led to the creation of the "Devil's Porridge" munitions factory (HM Factory, Gretna) on the English-Scottish border, which produced around 800 tonnes of cordite per week. The UK also imported some United States–developed smokeless powders for use in rifle cartridges. Cordite was also used for large weapons, such as tank guns, artillery, and naval guns. It has been used mainly for this purpose since the late 19th century by the UK and British Commonwealth countries. Its use was further developed before World War II, and as 2-and-3-inch-diameter (51 and 76 mm) Unrotated Projectiles for launching anti-aircraft weapons.[1] Small cordite rocket charges were also developed for ejector seats made by the Martin-Baker Company. Cordite was also used in the detonation system of the Little Boy atomic bomb dropped over Hiroshima in August 1945.[2]

The term "cordite" generally disappeared from official publications between the wars. During World War II,

Improved Military Rifle (IMR) line of extruded powder or the WC844 ball propellant currently in use in the 5.56×45mm NATO.[3] Production ceased in the United Kingdom around the end of the 20th century, with the closure of the last of the World War II cordite factories, ROF Bishopton. Triple-base propellant for UK service (for example, the 105 mm L118 Light Gun
) is now manufactured in Germany.

Adoption of smokeless powder by the British government

Replacements for gunpowder (black powder)

glycerin, a search began for a replacement for gunpowder.[4]

Early European smokeless powders

The first smokeless powder was developed in 1865 by

In 1882 the

Explosive Company of Stowmarket introduced EC Powder, which contained nitro-cotton and nitrates of potassium and barium in a grain gelatinised by ether alcohol. It had coarser grains than other nitrocellulose powders. It proved unsuitable for rifles, but it remained in long use for shotguns[8] and was later used for grenades and fragmentation bombs.[9]

In 1884, the French chemist

The following year, 1887, Alfred Nobel invented and patented a smokeless propellant he called Ballistite.[11] It was composed of 10% camphor, 45% nitroglycerine and 45% collodion (nitrocellulose). Over time the camphor tended to evaporate, leaving an unstable explosive.[12]

Development

Sir James Dewar at work

A United Kingdom government committee, known as the "Explosives Committee", chaired by Sir

Frederick Abel, monitored foreign developments in explosives and obtained samples of Poudre B and Ballistite; neither of these smokeless powders was recommended for adoption by the Explosives Committee.[citation needed
]

Abel, Sir

guncotton (nitrocellulose) and 5% petroleum jelly. Using acetone as a solvent, it was extruded as spaghetti-like rods initially called "cord powder" or "the Committee's modification of Ballistite", but this was swiftly abbreviated to "Cordite".[citation needed
]

Cordite began as a double-base propellant. In the 1930s triple-base was developed by including a substantial proportion of nitroguanidine. Triple-base propellant reduced the disadvantages of double-base propellant – its relatively high temperature and significant flash. Imperial Chemical Industries's (ICI) World War 2 double-base AN formulation also had a much lower temperature, but it lacked the flash reduction properties of N and NQ triple-base propellants.[citation needed]

Whilst cordite is classified as an explosive, it is not employed as a high explosive. It is designed to deflagrate, or burn, to produce high pressure gases.[citation needed]

Nobel and Abel patent dispute

Alfred Nobel sued Abel and Dewar over an alleged

Court of Appeal. This dispute eventually reached the House of Lords, in 1895, but it was finally lost because the words "of the well-known soluble kind" in his patent were taken to mean the soluble collodion, and hence specifically excluded the insoluble guncotton.[13] The ambiguous phrase was "soluble nitro-cellulose": soluble nitro-cellulose was known as Collodion and was soluble in alcohol. It was employed mainly for medical and photographic use. In contrast, insoluble in alcohol, nitrocellulose was known as gun cotton and was used as an explosive.[13][14] Nobel's patent refers to the production of Celluloid using camphor and soluble nitrocellulose; and this was taken to imply that Nobel was specifically distinguishing between the use of soluble and insoluble nitrocellulose.[14] For a forensic analysis of the case see The History of Explosives Vol II; The Case for Cordite, John Williams (2014). However, in her comprehensive 2019 biography of Alfred Nobel[15] Ingrid Carlberg
notes how closely Abel and Dewar were allowed to follow Nobel's work in Paris, and how disappointed Nobel was with how this trust was betrayed. The book argues for Nobel as the original inventor and that the case was lost because of an unimportant technicality.

Formulations

It was quickly discovered that the rate of burning could be varied by altering the surface area of the cordite. Narrow rods were used in small-arms and were relatively fast burning, while thicker rods would burn more slowly and were used for longer barrels, such as those used in artillery and naval guns.[citation needed]

Cordite (Mk I) and Cordite MD

The original Abel-Dewar formulation was soon superseded, as it caused excessive gun barrel erosion. It has since become known as Cordite Mk I.[citation needed]

The composition of cordite was changed to 65% guncotton, 30% nitroglycerin (keeping 5% petroleum jelly), and 0.8% acetone shortly after the end of the Second Boer War. This was known as Cordite MD (modified).[16]

Cordite MD cartridges typically weighed approximately 15% more than the cordite Mk I cartridges they replaced, to achieve the same muzzle velocity, due to the inherently less powerful nature of Cordite MD.[17]

Cordite RDB

During World War I acetone was in short supply in Great Britain, and a new experimental form was developed for use by the

Royal Navy Cordite Factory, Holton Heath.[citation needed
]

Acetone for the cordite industry during late World War I was eventually produced through the efforts of Dr. Chaim Weizmann, considered to be the father of industrial fermentation. While a lecturer at Manchester University Weizmann discovered how to use bacterial fermentation to produce large quantities of many desired substances. He used the bacterium Clostridium acetobutylicum (the so-called Weizmann organism) to produce acetone. Weizmann transferred the rights to the manufacture of acetone to the Commercial Solvents Corporation in exchange for royalties. After the Shell Crisis of 1915 during World War I, he was director of the British Admiralty Laboratories from 1916 until 1919.[citation needed]

Cordite RDB was later found to become unstable if stored too long.[citation needed]

Cordite SC

Research on solvent-free Cordite RDB technologically extremely similar to ballistite continued primarily on the addition of stabilizers, which led to the type commonly used in

thousandths of an inch. "SC T" followed by two sets of numbers indicated tubular propellant, with the numbers representing the two diameters in thousandths.[citation needed
]

Two-inch (approximately 50 mm) and three-inch (approximately 75 mm) diameter, rocket Cordite SC charges were developed in great secrecy before World War II for anti-aircraft purposes—the so-called Z batteries, using 'Unrotated Projectiles'.[1]

Great Britain changed to metric units in the 1960s, so there was a discontinuity in the propellant geometry numbering system.[citation needed]

Cordite N

An important development during World War II was the addition of another explosive, nitroguanidine, to the mixture to form triple-base propellant or Cordite N and NQ. The formulations were slightly different for artillery and naval use. This solved two problems associated with the large naval guns fitted to British Navy's capital ships: gun flash and muzzle erosion. Nitroguanidine produces large amounts of nitrogen when heated, which had the benefit of reducing the muzzle flash, and its lower burning temperature greatly reduced the erosion of the gun barrel.[citation needed]

N and NQ were also issued in limited amounts to ammunitions used by the British

5.5-inch land-based artillery pieces.[citation needed
]

After World War II production of double-base propellants generally ended. Triple-base propellants, N and NQ, were the only ones used in new ammunition designs, such as the cartridges for 105 mm Field and for 155 mm FH70.[citation needed]

Charge design

Manufacture

UK Government factories

In Great Britain cordite was developed for military use at the Royal Arsenal by Abel, Dewar and Kellner, Woolwich,[19] and produced at the Waltham Abbey Royal Gunpowder Mills from 1889 onwards.[20]

At the start of World War I cordite was in production at Waltham Abbey Royal Gunpowder Mills and by seven other suppliers (British Explosives Syndicate Ltd, Chilworth Gunpowder Company Ltd, Cotton Powder Company Ltd, Messrs Curtis's and Harvey Ltd, National Explosives Company Ltd, New Explosives Company Ltd and Nobels Explosive Company Ltd).[21] . Existing factories were expanded and new ones built notably by Nobel's at Ardeer,

Royal Navy Cordite Factory, Holton Heath
. A factory was also established by the Indian Government at Nilgris. Both the Gretna and the Holton Heath cordite factories closed at the end of World War I.[citation needed]

By the start of World War II Holton Heath had reopened, and an additional factory for the Royal Navy, The

filling factories for filling into ammunition.[citation needed
]

MoS Agency Factories and ICI Nobel in World War II

The British Government set up additional cordite factories, not under Royal Ordnance Factory control but as Agency Factories run on behalf of the

TNT.[22] The ICI Ardeer site also had a mothballed World War I Government-owned cordite factory.[23]

35% of British cordite produced between 1942 and 1945 came from Ardeer and these agency factories.[24] ICI ran a similar works at Deer Park (which was also confusingly known as Ardeer after the adjacent suburb) near Melbourne in Australia and in South Africa.[24]

Overseas supplies

Additional sources of propellant were also sought from the British Commonwealth in both World War I and World War II. Canada, South Africa, and Australia had ICI-owned factories that, in particular, supplied large quantities of cordite.[citation needed]

World War I

Bird's-eye view of a portion of Canadian Explosives Ltd., Nobel, Ontario

Canadian Explosives Limited was formed in 1910 to produce rifle cordite, at its Beloeil factory, for the Quebec Arsenal. By November 1915 production had been expanded to produce 350,000 lb (159,000 kg) of cordite per month for the Imperial Munitions Board.[25]

The Imperial Munitions Board set up a number of additional explosives factories in Canada. It built The British Cordite Ltd factory at Nobel, Ontario, in 1916/1917, to produce cordite. Production started in mid-1917.[25]

Canadian Explosives Limited built an additional cordite factory at Nobel, Ontario. Work started in February 1918 and was finished on 24 August 1918. It was designed to produce 1,500,000 lb (681,000 kg) of cordite per month.[25]

Factories, specifically "heavy industry" (Long, and Marland 2009) were important for the provision of munitions. Cordite factories typically employed women (Cook 2006) who put their lives at risk as they packed the shells.[citation needed]

Production quantities

Large quantities of cordite were manufactured in both World Wars for use by the military.[26]

Pre–World War I

Prior to World War I, most of the cordite used by the British Government was produced in its own factories. Immediately prior to World War I, between 6,000 and 8,000 tons per year of cordite were produced in the United Kingdom by private manufacturers; between 1,000 and 1,500 tons per year were made by Nobel's Explosives, at Ardeer.[23] However, private industry had the capability to produce about 10,000 tons per year, with Ardeer able to produce some 3,000 tons of this total.[23]

World War I

At the start of World War I, private industry in the UK was asked to produce 16,000 tons of cordite, and all the companies started to expand.

Holton Heath.[27]

In 1910, Canadian Explosives Limited produced 3,000 lb (1,362 kg) of rifle cordite per month at its Beloeil factory, for the Quebec Arsenal. By November 1915 production had been expanded to 350,000 lb (159,000 kg) of cordite per month (approximately 1,900 tonnes per year).[25] The Canadian Explosives Limited cordite factory at Nobel, Ontario, was designed to produce 1,500,000 lb (681 tonne) of cordite per month (approximately 8,170 tonnes per year).[citation needed]

Between wars

Royal Navy Cordite Factory, Holton Heath, both closed after the end of the war and the Gretna factory was dismantled.[18] This left the Waltham Abbey and Ardeer factories in production.[citation needed
]

MV Cordite, Royal Military College of Canada

World War II

As noted above, in addition to its own facilities, the British Government had ICI Nobel set up a number of Agency Factories producing cordite in Scotland, Australia, Canada and South Africa.[citation needed]

Citations

  1. ^ a b Brown 1999, Chapter 17
  2. ^ Coster-Mullen, John (2012). Atom Bombs: The Top Secret Inside Story of Little Boy and Fat Man. Waukesha, Wisconsin: J. Coster-Mullen. OCLC 298514167.
  3. ^ Watters, Daniel, "The Great Propellant Controversy", The Gun Zone, archived from the original on 22 July 2013, retrieved 30 November 2009
  4. .
  5. ^ "The Schultz White Gunpowder". Scientific American. Retrieved 17 April 2022.
  6. ^ "Schultze powder – Big Chemical Encyclopedia". chempedia.info. Retrieved 17 April 2022.
  7. ^ "No text – Big Chemical Encyclopedia". chempedia.info. Retrieved 17 April 2022.
  8. ^ Hogg OFG, 'Artillery: Its Origin, Heyday and Decline', Hurst & Company, London, 1989
  9. ^ http://www.aeragon.com/o/me/ni.html#ecpowder Archived 26 November 2022 at the Wayback Machine Aeragon Site Index > Ordnance > Military Explosives > Nitrocellulose > EC Powder
  10. JSTOR 23787093
    .
  11. .
  12. .
  13. ^ a b Schuck & Sohlman 1929, pp. 136–144
  14. ^ a b Schuck & Sohlman 1929, Appendix I: Alfred Nobel's English lawsuit. Mr justice Romer's judgment in the "Cordite Case"
  15. .
  16. ^ Britannica, The Editors of Encyclopaedia. "cordite". Encyclopedia Britannica, 13 Apr. 2017, https://www.britannica.com/technology/cordite Archived 29 December 2021 at the Wayback Machine. Accessed 29 December 2021.
  17. ^ Example : BL 6-inch Mk VII gun : 20 lb cordite Mk I, 23 lb cordite MD. Table 8 in Treatise on Ammunition 1915.
  18. ^ a b c d Ministry of Munitions of War
  19. ^ Zukas (2002)
  20. ^ Hogg (1970)
  21. ^ Ministry of Munitions (1922)
  22. ^ Cocroft 2000, Gazetteer
  23. ^ a b c d e Reader 1975, Chapter 14: "Warlike Supply"
  24. ^ a b Reader 1975, Chapter 15: "War Production"
  25. ^ a b c d Carnegie (1925).
  26. S2CID 111835074
    .
  27. ^ "Royal Naval Cordite Factory at Holton Heath, Wareham St. Martin – Dorset (UA) | Historic England". historicengland.org.uk. Retrieved 12 April 2022.

Bibliography

External links