List of exoplanet extremes

Source: Wikipedia, the free encyclopedia.

The following are lists of extremes among the known exoplanets. The properties listed here are those for which values are known reliably. It is important to note that the study of exoplanets is one of the most dynamic emerging fields of science, and these values may change wildly as new discoveries are made.

Extremes from Earth's viewpoint

Title Planet Star Data Notes
Most distant discovered SWEEPS-11 / SWEEPS-04 SWEEPS J175902.67−291153.5 / SWEEPS J175853.92−291120.6 27,710 light-years[1] Several candidate extragalactic planets have been detected.

The most distant potentially habitable planet confirmed is

Kepler-1606b, at 2,870 light-years distant,[2] although the unconfirmed planet KOI-5889.01
is over 5,000 light-years distant.

On 31 March 2022, K2-2016-BLG-0005Lb was reported to be the most distant exoplanet discovered by Kepler telescope, at 17,000 light-years away.[3]

Least distant Proxima Centauri b, c and d Proxima Centauri 4.25 light-years Proxima Centauri b and d are the closest rocky exoplanets, b is the closest potentially habitable exoplanet known, and c is the closest mini-Neptune and potentially ringed planet. As Proxima Centauri is the closest star to the Sun (and will stay so for the next 25,000 years), this is an absolute record.
Most distant directly visible
CT Chamaeleontis b
CT Chamaeleontis 622 light-years[4] The disputed planet candidate
CVSO 30 c may be more distant, at 1,200 light-years
.
Closest directly visible COCONUTS-2b
L 34-26
35.5 light-years[4]
WISE 1217+1626 B is closer, but is generally considered a brown dwarf. Proxima Centauri c (confirmed in 2020 using archival Hubble data from 1995+) may have been directly imaged.[5]
Star with the brightest apparent magnitude with a planet Pollux b Pollux[6] Apparent magnitude is 1.14
circumstellar disks surrounding it.[7] As of 2021, a candidate planet around Vega has been detected.[8]

Aldebaran (apparent magnitude varies between 0.75 and 0.95) was suspected to have a candidate planet, however later studies found the existence of planet inconclusive.[9]

Star with the faintest apparent magnitude with a planet MOA-bin-29Lb MOA-bin-29L Apparent magnitude is 44.61[4]
Largest angular distance separation from its host star COCONUTS-2b COCONUTS-2 594
arcseconds[10]

Planetary characteristics

Title Planet Star Data Notes
Least massive PSR B1257+12 b PSR B1257+12 0.020±0.002 M🜨[4] The extrasolar planetesimal WD 1145+017 b is less massive, at 0.00067 ME.[10]
Most massive The candidate for the most massive planet is contentious, as it is difficult to distinguish between a highly massive planet and a brown dwarf (the border between them approximately from 13 to 80 MJ). It is estimated the largest planets are approximately a dozen Jupiter masses.
Largest radius PDS 70 b PDS 70 2.09+0.23
−0.32
 – 2.72+0.39
−0.34
RJ.[11]
Proplyd 133-353 at 7.4±0.3 – 8±1.1
photoevaporating
disk.

HAT-P-67b has the largest accurately measured radius, at 2.085+0.096
−0.071
 RJ
.[13]

Smallest radius Kepler-37b Kepler-37 0.296±0.037 R🜨[4] The extrasolar planetesimals SDSS J1228+1040 b[14] and WD 1145+017 b are smaller.
Most dense TOI-4603b
HD 245134
14.1+1.7
−1.6
g/cm3 [15]
TOI-4603b has a mass of 12.89+0.58
−0.57
MJ and a radius of 1.042+0.038
−0.035
RJ.[16]

KELT-1b is denser, with 22.1+5.62
−9.16
g/cm3.[17] But, with a mass of 27.23 MJ, it is likely a brown dwarf.

Kepler-131c might be more dense at 77.7+55
−55
g/cm3,[18]
but the value is very uncertain.

Least dense Kepler-51[19] ~ 0.03 g/cm3[19] The densities of Kepler-51 b and c have been constrained to be below 0.05 g/cm3 (expected value 0.03 g/cm3 for each). The density of Kepler-51d is determined to be 0.046 ± 0.009 g/cm3.[19]
Hottest (irradiated hot Jupiter) KELT-9b
KELT-9
4,050±180 K[4](3777 °C) The unconfirmed planets
Kepler-70c may be hotter, both at >6,800 K.[20]
Hottest (self-luminous) AB Aurigae b AB Aurigae 3,800 K (3,530 °C)[21]
Coldest OGLE-2005-BLG-390Lb OGLE-2005-BLG-390L 50 K (−223.2 °C)[22] The disputed planet Proxima Centauri c may be cooler, at 39 K (−234.2 °C).[23]
Highest albedo LTT 9779 b LTT 9779 0.8[24] For comparison, Earth is 0.3 and Venus is 0.76.
Lowest albedo TrES-2b GSC 03549-02811 Geometric albedo < 1%[25] Best-fit model for albedo gives 0.04% (0.0004).[20]
Youngest ROXs 42Bb ROXs 42B 2.75 Proplyd 133-353 is younger, at 0.5 Myr,[27][28] but it could be a sub-brown dwarf rather than a rogue planet.[27]

IAU working definition of an exoplanet; the mass ratio with the primary is smaller than ~1/25[29] and 'more likely to have produced' 'by cloud core fragmentation' (like a star).[30]

K2-33b is the youngest transiting planet, at an age of 9.3 Myr.[31]

Oldest WASP-183b WASP-183 14.9±1.7 
Gyr[4]
The estimated age of the universe is 13.8 billion years, within the margin of error.

Orbital characteristics

Title Planet Star Data Notes
Longest orbital period
(Longest year)
COCONUTS-2b
COCONUTS-2
1.1 million years[32] 2MASS J2126–8140 previously held this record at ~900,000 years.
Shortest orbital period
(Shortest year)
PSR J1719-1438 b
PSR J1719-1438
2.17695 h (131 minutes)[33] An unconfirmed planet announced around the pulsar SWIFT J1756.9−2508 may have a shorter orbital period of under an hour.[34]

K2-137b has the shortest orbit around a main-sequence star (an M dwarf) at 4.31 hours.[35]

Most eccentric orbit HD 20782 b[36] HD 20782 0.956±0.004 [37] Record among confirmed planets. The disproven planet candidate at VB 10 was thought to have a higher eccentricity of 0.98.[38] HD 80606 b previously held this record at 0.93226+0.00064
−0.00069
.
Highest orbital inclination HD 204313 e HD 204313 176.092°+0.963°
−2.122°
[39][40]
Lowest orbital inclination HD 331093 b HD 331093 >0.3704°
lower limit, of 11.42°+5.388°
−3.07°
.[40]
Largest orbit around a single star COCONUTS-2b
COCONUTS-2
7,506+5,205
−2,060
 AU
[4]
Projected separation of 6,471 AU.[32] Next largest are 2MASS J2126–8140 with 6,900 AU and HD 106906 b[42] with ~738 AU.
Smallest orbit
PSR J1719-1438 b
PSR J1719−1438 0.0044 AU (658,230 km) [43]
Smallest orbit around binary star Kepler-47b Kepler-47AB 0.2877+0.0014
−0.0011
 AU
[4]
[44]
Smallest ratio of
semi-major axis
of a planet orbit to binary star orbit
Kepler-16b Kepler-16AB 3.14 ± 0.01 [45]
Largest orbit around binary star SR 12 (AB) c SR 12 AB ≈1100 AU[46] SR 12 (AB) c has a mass of 0.013±0.007 M.[46]

ROXs 42B (AB) b is lower in mass at 9.0+6
−3
MJ, however also in projected separation of ≈150 AU.[47]

DT Virginis c, also known as Ross 458 (AB) c, at a projected separation of ≈1200 AU, with several mass estimates below the deuterium burning limit, has a latest mass determination of 27±4 MJ.[48]

Largest orbit around a single star in a multiple star system
ROXs 12 b
ROXs 12 210±20 AU[4]
Largest separation between binary stars with a circumbinary planet SR 12 (AB) c SR 12 AB ≈26 AU[46] SR 12 (AB) c has a mass of 0.013±0.007 M at a projected separation of ≈1100 AU.[46]

FW Tauri b orbits at a projected separation of 330±30 AU around a ≈11 AU separated binary.[49] It was shown to be more likely a 0.1 M star surrounded by a protoplanetary disk than a planetary-mass companion.[50]

Closest orbit between stars with a planet orbiting one of the stars OGLE-2013-BLG-0341LBb OGLE-2013-BLG-0341LB ~12–17 AU
(10 or 14 AU projected distance)[51]
OGLE-2013-BLG-0341L b's semi-major axis is 0.7 AU.[51]
Smallest semi-major-axis difference between consecutive planets
Kepler-70c[20]
Kepler-70 0.0016 AU (240,000 km) During closest approach, Kepler-70c would appear 5 times the size of the Moon in Kepler-70b's sky.[needs update]
Smallest semi-major axis ratio between consecutive planets
Kepler-36c
Kepler-36 11% Kepler-36b and c have semi-major axes of 0.1153 AU and 0.1283 AU, respectively, c is 11% further from star than b.

Stellar characteristics

Title Planet Star Data Notes
Highest metallicity HD 126614 Ab HD 126614 A +0.56 dex Located in a triple star system.
Lowest metallicity K2-344b K2-344 −0.95±0.02 dex[4]
BD+20°2457 may be the lowest-metallicity planet host ([Fe/H]=−1.00); however, the proposed planetary system is dynamically unstable.[52] Kapteyn's Star may also be the lowest-metallicity planet host ([Fe/H]=−0.99±0.04), but its planets are most likely artifacts of stellar activity and rotation.[53]

Planets were announced around even the extremely low-metallicity stars HIP 13044 and HIP 11952; however, these claims have since been disproven.[54]

A brown dwarf or massive gas giant companion was announced around the population II star HE 1523-0901, whose metallicity is −2.65±0.22 dex.[55] While the inclination of the companion is not known, if its orbit is nearly face-on, it would be sufficiently massive to become a red dwarf instead.[56]

Highest stellar mass
Mu2 Scorpii b
Mu2 Scorpii 9.1±0.3 M[57]
M51-ULS-1b, listed as a candidate planet with 4 sigma confidence, may be the planet with the highest-mass host star. The host is a massive O-class supergiant and a black hole orbiting each other at 0.8 AU, with a combined system mass of >60 solar masses. The planet is a Saturn-sized (0.72 Jupiter radii) object orbiting the black-hole/supergiant binary at 10 AU. The host stars giving off a combined 1 million solar luminosities, the planet receives the equivalent irradiation of 51 Pegasi b, which orbits its star at 0.045 AU. M51-ULS-1b would also be one of the youngest planets ever discovered, with a system age of <10 million years according to evolutionary models.[58]The stars R126 (HD 37974) and R66 (HD 268835) in the Large Magellanic Cloud
have masses of 70 and 30 solar masses and have dust discs but no planets have been detected yet.
Lowest stellar mass (main sequence) KMT-2021-BLG-1554Lb KMT-2021-BLG-1554L 0.08+0.013
−0.014
 M
[40]
The mass of this star is near to the
hydrogen burning limit
.

KMT-2016-BLG-2142L have a lower mass, of 0.073+0.117
−0.04
 M
, but the value is highly uncertain.[40]

Lowest stellar mass (brown dwarf)
2MASS J1119-1137
B
2MASS J1119–1137
A
0.0033 M The system 2MASS J1119-1137 AB is a pair of binary rogue planets approximately 3.7 MJup each.[59]
Largest stellar radius HD 240237 b HD 240237 71.23±17.07 R[4] HD 81817 and Mirach (β Andromedae) are larger, at 83.8±7.8 R[4] and 86.4 R[60] respectively, but their planetary companions may actually be brown dwarfs, and in the case of HD 81817 its companion may be sufficiently massive to be a red dwarf. R Leonis (299 or 320-350 R)[61][62] has a candidate planet. It is a Mira variable.

The stars R126 and R66 in the Large Magellanic Cloud have radius of 78 R and 131 R[63] and have dust discs but no planets have been detected yet.

Smallest stellar radius (main sequence star) TRAPPIST-1 planets TRAPPIST-1 0.1192±0.0013 R[64] VB 10 (0.102 R)[65] has a disproven planet candidate.
Smallest stellar radius (brown dwarf) 2M 0746+20 b[66] 2M 0746+20 0.089 (± 0.003) R Planet's mass is very uncertain at 30.0 (± 25.0) MJup.
Smallest stellar radius (stellar remnant)
d
PSR B0943+10 and PSR B1257+12 0.000007187 R (5 km)[70] [71][b] Both stars (PSR B0943+10 and PSR B1257+12) have the same size.

PSR B0943+10 may be a quark star. If so, its radius is predicted to be 2.6 km.[70]

Highest
stellar luminosity
Beta Andromedae b
Mirach 1675 L [72][40] With a mass of 28.26+2.05
−2.17
 MJ
, the planet is likely a brown dwarf. Beta Cancri, with a luminosity of 794 L, is the most luminous star to host a planet (Beta Cancri b) that is not a potential brown dwarf.[73][40]

The stars R126 and R66 in the Large Magellanic Cloud have luminosity of 1400000 L and 320000 L[63] and have dust discs but no planets have been detected yet.

Lowest stellar luminosity (main sequence star) TRAPPIST-1 planets TRAPPIST-1 0.0005495 L [74][40]
Oldest star WASP-183b WASP-183 14.9±1.7 
Gyr[4]
The estimated age of the universe is 13.8 billion years, within the margin of error.
Hottest star with a planet NSVS 14256825 b NSVS 14256825 40,000 K[75] NN Serpentis is hotter, with a temperature of 57,000 K,[4] but the existence of its planets is disputed.[76]
Hottest main-sequence star with a planet b Centauri b b Centauri 18,310±320 K[77] V921 Scorpii b orbits a hotter star, at 30,000 K. Its host star is a 20-solar-mass B0IV-class subgiant.[78] However, at 60 Jupiter masses, it is not considered a planet under most definitions.

The candidate planet

M51-ULS-1b
's supergiant primary is an O5-class supergiant with an estimated surface temperature of 40,000 K, but as the star is a supergiant, does not count as on the main sequence.

Coolest star with a planet TRAPPIST-1 planets TRAPPIST-1 2,511 K Technically
CFBDSIR 1458+10 and WISE 1217+1626
are cooler, but are classified as brown dwarfs.

System characteristics

Title System(s) Planet(s) Star(s) Notes
System with most planets Kepler-90 8 1 Tau Ceti currently has no confirmed planetary companion, although it has been proposed that the number of orbiting planets may be 8, 9 or even 10.[79] The four planets Tau Ceti e, f, g and h are considered as strong candidates.[80]

HD 10180 has six confirmed planets and potentially three more planets.[81]

System with most planets in habitable zone TRAPPIST-1 7 1 Four planets in this system (d, e, f and g) orbit within the habitable zone.[82]
System with most stars
Kepler-64
PH1b (Kepler-64b) 4 PH1b has a circumbinary orbit.

30 Arietis Bb was believed to be either brown dwarf or a massive gas giant in a quadruple star system until later studies revealed a true mass well above 80 MJup.[83]

Multiplanetary system with smallest mean semi-major axis (planets are nearest to their star) Kepler-42
d
1 Kepler-42 b, c and d have a semi-major axis of only 0.0116, 0.006 and 0.0154 AU, respectively.

Kepler-70 b, c and d (all unconfirmed and disputed) have a semi-major axis of only 0.006, 0.0076 and ~0.0065 AU, respectively.

Multiplanetary system with largest mean semi-major axis (planets are farthest from their star) TYC 8998-760-1
c
1 TYC 8998-760-1 b and c have a semi-major axis of 162 and 320 AU, respectively.[4]
Multiplanetary system with smallest range of semi-major axis (smallest difference between the star's nearest planet and its farthest planet) Kepler-42
d
1 Kepler-42 b, c and d have a semi-major axis of only 0.0116, 0.006 and 0.0154 AU, respectively. The separation between closest and furthest is only 0.0094 AU.

Kepler-70 b, c and d (all unconfirmed and disputed) have a semi-major axis of only 0.006, 0.0076 and ~0.0065 AU, respectively. The separation between closest and furthest is only 0.0016 AU (239,356 km).

Multiplanetary system with largest range of semi-major axis (largest difference between the star's nearest planet and its farthest planet) TYC 8998-760-1
c
1 TYC 8998-760-1 b and c have a semi-major axis of 162 and 320 AU, respectively.[4] The separation between closest and furthest is 158 AU.
System with smallest total planetary mass Kepler-444 b, c, d, e, f 3 The planets in the Kepler-444 system have radii of 0.4, 0.497, 0.53, 0.546 and 0.741 Earth radii, respectively. Due to their size and proximity to Kepler-444, these must be rocky planets, with masses close to that of Mars. For comparison, Mars has a mass of 0.105 Earth masses and a radius of 0.53 Earth radii.
System with largest total planetary mass Nu Ophiuchi b, c 1 Nu Ophiuchi b and c have masses of 22.206 and 24.662 Jupiter masses, respectively.[4] They may be brown dwarfs.
Multiplanetary system with smallest mean planetary mass Kepler-444 b, c, d, e, f 3 The planets in the Kepler-444 system have radii of 0.4, 0.497, 0.53, 0.546 and 0.741 Earth radii, respectively. Due to their size and proximity to Kepler-444, these must be rocky planets, with masses close to that of Mars. For comparison, Mars has a mass of 0.105 Earth masses and a radius of 0.53 Earth radii.
Multiplanetary system with largest mean planetary mass Nu Ophiuchi b, c 1 Nu Ophiuchi b and c have masses of 22.206 and 24.662 Jupiter masses, respectively.[4] They may be brown dwarfs.
Exo-multiplanetary system with smallest range in planetary mass, log scale (smallest proportional difference between the most and least massive planets) Teegarden's Star b, c 1
c
are estimated to have masses of 1.05 and 1.11 Earth masses, respectively.
Exo-multiplanetary system with largest range in planetary mass, log scale (largest proportional difference between the most and least massive planets) Kepler-37 b, d 1 Mercury and Jupiter have a mass ratio of 5,750 to 1. Kepler-37 d and b may have a mass ratio between 500 and 1,000, and Gliese 676 c and d have a mass ratio of 491.

See also

Notes and references

  1. ^ "HEC: Top 10 Exoplanets". University of Puerto Rico at Arecibo. 5 December 2015. Archived from the original on 17 December 2013. Retrieved 1 August 2017.
  2. ^ "Exoplanet-catalog-Exoplanet exploration-Kepler-1606b".
  3. .
  4. ^ a b c d e f g h i j k l m n o p q r s t u "Planetary Systems Composite Data". NASA Exoplanet Archive. Retrieved 12 December 2021.
  5. S2CID 215754278
    .
  6. ^ "NASA, ESA Telescopes Find Evidence for Asteroid Belt Around Vega" (Press release). Whitney Clavin, NASA. 8 January 2013. Retrieved 4 March 2013.
  7. S2CID 231693198
    .
  8. .
  9. ^ a b "The Extrasolar Planet Encyclopaedia — Catalog Listing". Extrasolar Planets Encyclopaedia. 11 January 1995. Retrieved 4 May 2019.
  10. S2CID 216035946
    .
  11. .
  12. ^ Manitowoc, Terrence Gollata (27 November 2018). "What's the diameter of the largest exoplanet found so far?". Astronomy Magazine. Retrieved 3 January 2024.
  13. ^ "Planet SDSS J1228+1040 b". Extrasolar Planets Encyclopaedia. Retrieved 5 August 2019.
  14. ISSN 0004-6361
    .
  15. ^ "Planet TOI-4603 b". NASA Exoplanet Archive. Retrieved 17 November 2023.
  16. ISSN 1538-4365
    .
  17. .
  18. ^ a b c d Very Low-Density Planets around Kepler-51 Revealed with Transit Timing Variations and an Anomaly Similar to a Planet-Planet Eclipse Event: Kento Masuda
  19. ^
    S2CID 2213885
    .
  20. .
  21. .
  22. .
  23. . Retrieved 12 July 2023.
  24. S2CID 119287494. Archived from the original
    (PDF) on 17 March 2012. Retrieved 12 August 2011.
  25. .
  26. ^ .
  27. ^ "The Extrasolar Planet Encyclopaedia — Proplyd 133-353". Extrasolar Planets Encyclopaedia. Retrieved 30 March 2019.
  28. .
  29. .
  30. .
  31. ^ .
  32. ^ Nelemans, G.; Haaften, L. M. van; Voss, R.; Jonker, P. G. "Formation of the planet orbiting the millisecond pulsar J1719-1438". researchgate.net.
  33. ^ "The Extrasolar Planet Encyclopaedia — SWIFT J1756-2508". Extrasolar Planets Encyclopaedia. Retrieved 22 August 2018.
  34. ^ "The Extrasolar Planet Encyclopaedia — K2-137 b.". Extrasolar Planets Encyclopaedia. 2018.
  35. ^ "HD 20781 b". Open Exoplanet Catalogue. Retrieved 20 October 2018.
  36. ^ "The Extrasolar Planet Encyclopaedia — HD 20782 b". Extrasolar Planets Encyclopaedia. Retrieved 4 May 2019.
  37. ^ "The Extrasolar Planet Encyclopaedia — VB 10 b". Extrasolar Planets Encyclopaedia. Retrieved 12 February 2020.
  38. ISSN 0067-0049
    .
  39. ^ a b c d e f g h "Planetary Systems". exoplanetarchive.ipac.caltech.edu. Retrieved 15 January 2024.
  40. ISSN 0004-6361
    .
  41. .
  42. ^ "PSR J1719-1438 | NASA Exoplanet Archive". exoplanetarchive.ipac.caltech.edu. Retrieved 15 January 2024.
  43. S2CID 44970411
    .
  44. .
  45. ^ .
  46. .
  47. .
  48. .
  49. .
  50. ^ . these projected separations are good proxies for the semi-major axis (afterupward adjustment by to correct for projection effects)
  51. .
  52. .
  53. .
  54. .
  55. ^ "Notes for mu2 scorpii". Extrasolar Planets Encyclopaedia. Retrieved 6 May 2022.
  56. ^ "Notes for planet M51-ULS-1b". Extrasolar Planets Encyclopaedia. Retrieved 18 July 2021.
  57. ^ "Notes for planet 2MASSS J1119-1137 B". Extrasolar Planets Encyclopaedia. Retrieved 29 August 2017.
  58. ISSN 0004-6361
    .
  59. .
  60. .
  61. ^ .
  62. .
  63. ^ "The Extrasolar Planet Encyclopaedia — 2M 0746+20 b". Extrasolar Planets Encyclopaedia. Archived from the original on 4 September 2019. Retrieved 8 March 2014.
  64. S2CID 255196382
    .
  65. ^ "The Extrasolar Planet Encyclopaedia — PSR B0943+10 c". Extrasolar Planets Encyclopaedia. Retrieved 18 January 2023.
  66. ^ "The Extrasolar Planet Encyclopaedia — PSR B0943+10 b". Extrasolar Planets Encyclopaedia. Retrieved 18 January 2023.
  67. ^
    S2CID 18183996
    .
  68. ^ "Archived copy" (PDF). Archived from the original (PDF) on 12 February 2019. Retrieved 26 October 2017.{{cite web}}: CS1 maint: archived copy as title (link)
  69. ISSN 0004-6361
    .
  70. .
  71. .
  72. .
  73. .
  74. .
  75. ^ "V921 Sco b". Extrasolar Planets Encyclopaedia. Retrieved 18 July 2021.
  76. S2CID 225094415
    .
  77. .
  78. .
  79. ^ "NASA telescope reveals largest batch of Earth-size, habitable-zone planets around single star". Exoplanet Exploration: Planets Beyond our Solar System. nasa.gov. 21 February 2017. Retrieved 14 December 2017.
  80. S2CID 221995447
    .
  1. ^ Based on the estimated temperature and luminosity.
  2. ^ This is the radius

External links