Proxima Centauri

Source: Wikipedia, the free encyclopedia.

Proxima Centauri
diffraction spikes
.
Observation data
ICRS
)
Constellation Centaurus
Pronunciation
/ˌprɒksəmə sɛnˈtɔːri/ or
/ˈprɒksɪmə sɛnˈtɔːr/[1]
Right ascension 14h 29m 42.946s[2]
Declination −62° 40′ 46.16″[2]
Apparent magnitude (V) 10.43 – 11.11[3]
Characteristics
Evolutionary stage Main sequence
Spectral type M5.5Ve[4]
U−B color index 1.26
B−V color index 1.82
V−R color index 1.68
R−I color index 2.04
J−H color index 0.522
J−K color index 0.973
Variable type UV Cet + BY Dra[3]
Distance
4.2465 ± 0.0003 ly
(1.30197 ± 0 pc)
Absolute magnitude (MV)15.60[6]
Argument of periastron
(ω)
(secondary)
72.3+8.7
−6.6
°
Details
Gyr
NLTT 37460[15]
Database references
SIMBADdata
ARICNSdata

Proxima Centauri is a small, low-mass

Latin name means the 'nearest [star] of Centaurus'. It was discovered in 1915 by Robert Innes and is the nearest-known star to the Sun. With a quiescent apparent magnitude of 11.13, it is too faint to be seen with the unaided eye. Proxima Centauri is a member of the Alpha Centauri star system, being identified as component Alpha Centauri C, and is 2.18° to the southwest of the Alpha Centauri AB pair. It is currently 12,950 AU (0.2 ly) from AB, which it orbits with a period
of about 550,000 years.

Proxima Centauri is a

main-sequence star
for another four trillion years.

Proxima Centauri has two known exoplanets and one candidate exoplanet: Proxima Centauri b, Proxima Centauri d and the disputed Proxima Centauri c.[nb 3] Proxima Centauri b orbits the star at a distance of roughly 0.05 AU (7.5 million km) with an orbital period of approximately 11.2 Earth days. Its estimated mass is at least 1.07 times that of Earth.[16] Proxima b orbits within Proxima Centauri's habitable zone—the range where temperatures are right for liquid water to exist on its surface—but, because Proxima Centauri is a red dwarf and a flare star, the planet's habitability is highly uncertain. A candidate super-Earth, Proxima Centauri c, roughly 1.5 AU (220 million km) away from Proxima Centauri, orbits it every 1,900 d (5.2 yr).[17][18] A sub-Earth, Proxima Centauri d, roughly 0.029 AU (4.3 million km) away, orbits it every 5.1 days.[16]

General characteristics

light curves for Proxima Centauri are shown. Plot A shows a superflare which dramatically increased the star's brightness for a few minutes. Plot B shows the relative brightness variation over the course of the star's 83 day rotation period. Plot C shows variation over a 6.8 year period, which may be the length of the star's magnetic activity period. Adapted from Howard et al. (2018)[19] and Mascareño et al. (2016)[20]

Proxima Centauri is a

visible light the eye is most sensitive to, it is only 0.0056% as luminous as the Sun.[23] More than 85% of its radiated power is at infrared wavelengths.[24]

In 2002,

microlensing events to be 0.150+0.062
−0.051
 M
.[26]

Lower mass main-sequence stars have higher mean

units of cgs, is 5.20.[8] This is 162 times the surface gravity on Earth.[nb 5]

A 1998 study of photometric variations indicates that Proxima Centauri completes a full rotation once every 83.5 days.[28] A subsequent time series analysis of chromospheric indicators in 2002 suggests a longer rotation period of 116.6±0.7 days.[29] Later observations of the star's magnetic field subsequently revealed that the star rotates with a period of 89.8±4 days, consistent with a measurement of 92.1+4.2
−3.5
 days from radial velocity observations.[12][30]

Structure and fusion

Because of its low mass, the interior of the star is completely

thermonuclear fusion of hydrogen does not accumulate at the core but is instead circulated throughout the star. Unlike the Sun, which will only burn through about 10% of its total hydrogen supply before leaving the main sequence, Proxima Centauri will consume nearly all of its fuel before the fusion of hydrogen comes to an end.[32]

Convection is associated with the generation and persistence of a

stellar flares that briefly (as short as per ten seconds)[33] increase the overall luminosity of the star. On May 6, 2019, a flare event bordering Solar M and X flare class,[34] briefly became the brightest ever detected, with a far ultraviolet emission of 2×1030 erg.[33] These flares can grow as large as the star and reach temperatures measured as high as 27 million K[35]—hot enough to radiate X-rays.[36] Proxima Centauri's quiescent X-ray luminosity, approximately (4–16) × 1026 erg/s ((4–16) × 1019 W), is roughly equal to that of the much larger Sun. The peak X-ray luminosity of the largest flares can reach 1028 erg/s (1021 W).[35]

Proxima Centauri's chromosphere is active, and its

spectrum displays a strong emission line of singly ionized magnesium at a wavelength of 280 nm.[37] About 88% of the surface of Proxima Centauri may be active, a percentage that is much higher than that of the Sun even at the peak of the solar cycle. Even during quiescent periods with few or no flares, this activity increases the corona temperature of Proxima Centauri to 3.5 million K, compared to the 2 million K of the Sun's corona,[38] and its total X-ray emission is comparable to the sun's.[39] Proxima Centauri's overall activity level is considered low compared to other red dwarfs,[39] which is consistent with the star's estimated age of 4.85 × 109 years,[14] since the activity level of a red dwarf is expected to steadily wane over billions of years as its stellar rotation rate decreases.[40] The activity level appears to vary[41] with a period of roughly 442 days, which is shorter than the solar cycle of 11 years.[42]

Proxima Centauri has a relatively weak stellar wind, no more than 20% of the mass loss rate of the solar wind. Because the star is much smaller than the Sun, the mass loss per unit surface area from Proxima Centauri may be eight times that from the solar surface.[43]

Life phases

A red dwarf with the mass of Proxima Centauri will remain on the main sequence for about four trillion years. As the proportion of helium increases because of hydrogen fusion, the star will become smaller and hotter, gradually transforming into a so-called "blue dwarf". Near the end of this period it will become significantly more luminous, reaching 2.5% of the Sun's luminosity (L) and warming up any orbiting bodies for a period of several billion years. When the hydrogen fuel is exhausted, Proxima Centauri will then evolve into a helium white dwarf (without passing through the red giant phase) and steadily lose any remaining heat energy.[32][44]

The Alpha Centauri system may form naturally through a low-mass star being dynamically captured by a more massive binary of 1.5–2 M within their embedded star cluster before the cluster disperses.[45] However, more accurate measurements of the radial velocity are needed to confirm this hypothesis.[46] If Proxima Centauri was bound to the Alpha Centauri system during its formation, the stars are likely to share the same elemental composition. The gravitational influence of Proxima might have stirred up the Alpha Centauri protoplanetary disks. This would have increased the delivery of volatiles such as water to the dry inner regions, so possibly enriching any terrestrial planets in the system with this material.[46]

Alternatively, Proxima Centauri may have been captured at a later date during an encounter, resulting in a highly eccentric orbit that was then stabilized by the galactic tide and additional stellar encounters. Such a scenario may mean that Proxima Centauri's planetary companions have had a much lower chance for orbital disruption by Alpha Centauri.[11] As the members of the Alpha Centauri pair continue to evolve and lose mass, Proxima Centauri is predicted to become unbound from the system in around 3.5 billion years from the present. Thereafter, the star will steadily diverge from the pair.[47]

Motion and location

Alpha Centauri A and B are the bright apparent star to the left, which are in a triple star system with Proxima Centauri, circled in red. The bright star system to the right is the unrelated Beta Centauri.

Based on a parallax of 768.0665±0.0499 mas, published in 2020 in

arcseconds per year across the sky.[53] It has a radial velocity toward the Sun of 22.2 km/s.[5] From Proxima Centauri, the Sun would appear as a bright 0.4-magnitude star in the constellation Cassiopeia, similar to that of Achernar or Procyon from Earth.[nb 6]

Among the known stars, Proxima Centauri has been the closest star to the Sun for about 32,000 years and will be so for about another 25,000 years, after which Alpha Centauri A and Alpha Centauri B will alternate approximately every 79.91 years as the closest star to the Sun. In 2001, J. García-Sánchez et al. predicted that Proxima Centauri will make its closest approach to the Sun in approximately 26,700 years, coming within 3.11 ly (0.95 pc).[54] A 2010 study by V. V. Bobylev predicted a closest approach distance of 2.90 ly (0.89 pc) in about 27,400 years,[55] followed by a 2014 study by C. A. L. Bailer-Jones predicting a perihelion approach of 3.07 ly (0.94 pc) in roughly 26,710 years.[56] Proxima Centauri is orbiting through the Milky Way at a distance from the Galactic Centre that varies from 27 to 31 kly (8.3 to 9.5 kpc), with an orbital eccentricity of 0.07.[57]

Alpha Centauri

A radar map of all stellar objects or stellar systems within 9 light years (ly) from its center the Sun (Sol). Proxima Centauri is the unlabled mark just next to Alpha Centauri. The diamond-shapes are their positions entered according to right ascension in hours angle (indicated at the edge of the map's reference disc), and according to their declination. The second mark shows each's distance from Sol, with the concentric circles indicating the distance in steps of one ly.

Proxima Centauri has been suspected to be a companion of the Alpha Centauri

apastron.[5] At present, Proxima Centauri is 12,947 ± 260 AU (1.94 ± 0.04 trillion km) from the Alpha Centauri AB barycenter, nearly to the farthest point in its orbit.[5]

Six single stars, two binary star systems, and a triple star share a common motion through space with Proxima Centauri and the Alpha Centauri system. (The co-moving stars include

moving group of stars, which would indicate a common point of origin, such as in a star cluster.[58]

Planetary system

The Proxima Centauri planetary system[59][60][17][61][62][18][16]
Companion
(in order from star)
Mass Semimajor axis
(AU)
Orbital period
(days)
Eccentricity Inclination Radius
d ≥0.26±0.05 M🜨 0.02885+0.00019
−0.00022
5.122+0.002
−0.0036
0.04+0.15
−0.04
0.81±0.08 R🜨
b 1.07±0.06 M🜨 0.04857+0.00029
−0.00029
11.18418+0.00068
−0.00074
0.109+0.076
−0.068
≙1.30+1.20
−0.62
 R🜨
c (disputed[30][63]) 7±1 M🜨 1.489±0.049 1928±20 0.04±0.01 133±1°
Schematic of the three planets (d, b and c) of the Proxima Centauri system, with the habitable zone identified

As of 2022, three planets (two confirmed and one candidate) have been detected in orbit around Proxima Centauri, with one being among the lightest ever detected by radial velocity ("d"), one close to Earth's size within the

gas dwarf
that orbits much farther out than the inner two ("c").

Searches for exoplanets around Proxima Centauri date back to the late 1970s. In the 1990s, multiple measurements of Proxima Centauri's radial velocity constrained the maximum mass that a detectable companion could possess.

Jupiter-sized planet with an orbital period of 2−12 years.[68]

In 2017, a team of astronomers using the

Atacama Large Millimeter/submillimeter Array reported detecting a belt of cold dust orbiting Proxima Centauri at a range of 1−4 AU from the star. This dust has a temperature of around 40 K and has a total estimated mass of 1% of the planet Earth. They tentatively detected two additional features: a cold belt with a temperature of 10 K orbiting around 30 AU and a compact emission source about 1.2 arcseconds from the star. There was a hint at an additional warm dust belt at a distance of 0.4 AU from the star.[69] However, upon further analysis, these emissions were determined to be most likely the result of a large flare emitted by the star in March 2017. The presence of dust within 4 AU radius from the star is not needed to model the observations.[70][71]

Planet b

Proxima Centauri b, or Alpha Centauri Cb, orbits the star at a distance of roughly 0.05 AU (7.5 million km) with an orbital period of approximately 11.2 Earth days. Its estimated mass is at least 1.17 times that of the Earth.[72] Moreover, the equilibrium temperature of Proxima Centauri b is estimated to be within the range where water could exist as liquid on its surface; thus, placing it within the habitable zone of Proxima Centauri.[59][73][74]

The first indications of the

transit of this planet across the face of Proxima Centauri have been made. A transit-like signal appearing on September 8, 2016, was tentatively identified, using the Bright Star Survey Telescope at the Zhongshan Station in Antarctica.[81]

In 2016, in a paper that helped to confirm Proxima Centauri b's existence, a second signal in the range of 60 to 500 days was detected. However, stellar activity and inadequate sampling causes its nature to remain unclear.[59]

Planet c

Proxima Centauri c is a candidate

gas dwarf about 7 Earth masses orbiting at roughly 1.5 astronomical units (220,000,000 km) every 1,900 days (5.2 yr).[82] If Proxima Centauri b were the star's Earth, Proxima Centauri c would be equivalent to Neptune. Due to its large distance from Proxima Centauri, it is unlikely to be habitable, with a low equilibrium temperature of around 39 K.[83] The planet was first reported by Italian astrophysicist Mario Damasso and his colleagues in April 2019.[83][82] Damasso's team had noticed minor movements of Proxima Centauri in the radial velocity data from the ESO's HARPS instrument, indicating a possible additional planet orbiting Proxima Centauri.[83] In 2020, the planet's existence was confirmed by Hubble astrometry data from c. 1995.[84] A possible direct imaging counterpart was detected in the infrared with the SPHERE, but the authors admit that they "did not obtain a clear detection." If their candidate source is in fact Proxima Centauri c, it is too bright for a planet of its mass and age, implying that the planet may have a ring system with a radius of around 5 RJ.[85] A 2022 study disputed the radial velocity confirmation of the planet.[30]

Planet d

In 2019, a team of astronomers revisited the data from ESPRESSO about Proxima Centauri b to refine its mass. While doing so, the team found another radial velocity spike with a periodicity of 5.15 days. They estimated that if it were a planetary companion, it would be no less than 0.29 Earth masses.[62] Further analysis confirmed the signal's existence leading up the discovery's announcement in February 2022.[16]

Habitability

Overview and comparison of the orbital distance of the habitable zone.

Prior to the discovery of Proxima Centauri b, the TV documentary

Alien Worlds hypothesized that a life-sustaining planet could exist in orbit around Proxima Centauri or other red dwarfs. Such a planet would lie within the habitable zone of Proxima Centauri, about 0.023–0.054 AU (3.4–8.1 million km) from the star, and would have an orbital period of 3.6–14 days.[86] A planet orbiting within this zone may experience tidal locking to the star. If the orbital eccentricity of this hypothetical planet were low, Proxima Centauri would move little in the planet's sky, and most of the surface would experience either day or night perpetually. The presence of an atmosphere could serve to redistribute heat from the star-lit side to the far side of the planet.[87]

Proxima Centauri's flare outbursts could erode the atmosphere of any planet in its habitable zone, but the documentary's scientists thought that this obstacle could be overcome. Gibor Basri of the University of California, Berkeley argued: "No one [has] found any showstoppers to habitability." For example, one concern was that the torrents of charged particles from the star's flares could strip the atmosphere off any nearby planet. If the planet had a strong magnetic field, the field would deflect the particles from the atmosphere; even the slow rotation of a tidally locked planet that spins once for every time it orbits its star would be enough to generate a magnetic field, as long as part of the planet's interior remained molten.[88]

Other scientists, especially proponents of the

BLC-1 was announced as potentially coming from the star.[91] The signal was later determined to be human-made radio interference.[92]

Observational history

Harold L. Alden in 1928, who confirmed Innes's view that it is closer, with a parallax of 0.783″±0.005″.[94][96]

A size estimate for Proxima Centauri was obtained by the Canadian astronomer John Stanley Plaskett in 1925 using interferometry. The result was 207,000 miles (333,000 km), or approximately 0.24 R.[99]

In 1951, American astronomer Harlow Shapley announced that Proxima Centauri is a flare star. Examination of past photographic records showed that the star displayed a measurable increase in magnitude on about 8% of the images, making it the most active flare star then known.[100][101] The proximity of the star allows for detailed observation of its flare activity. In 1980, the Einstein Observatory produced a detailed X-ray energy curve of a stellar flare on Proxima Centauri. Further observations of flare activity were made with the EXOSAT and ROSAT satellites, and the X-ray emissions of smaller, solar-like flares were observed by the Japanese ASCA satellite in 1995.[102] Proxima Centauri has since been the subject of study by most X-ray observatories, including XMM-Newton and Chandra.[35]

Because of Proxima Centauri's southern declination, it can only be viewed south of

apparent visual magnitude 11, so a telescope with an aperture of at least 8 cm (3.1 in) is needed to observe it, even under ideal viewing conditions—under clear, dark skies with Proxima Centauri well above the horizon.[105] In 2016, the International Astronomical Union organized a Working Group on Star Names (WGSN) to catalogue and standardize proper names for stars.[106] The WGSN approved the name Proxima Centauri for this star on August 21, 2016, and it is now so included in the List of IAU approved Star Names.[107]

In 2016, a superflare was observed from Proxima Centauri, the strongest flare ever seen. The optical brightness increased by a factor of 68× to approximately magnitude 6.8. It is estimated that similar flares occur around five times every year but are of such short duration, just a few minutes, that they have never been observed before.[19] On 2020 April 22 and 23, the New Horizons spacecraft took images of two of the nearest stars, Proxima Centauri and Wolf 359. When compared with Earth-based images, a very large parallax effect was easily visible. However, this was only used for illustrative purposes and did not improve on previous distance measurements.[108][109]

Future exploration

Because of the star's proximity to Earth, Proxima Centauri has been proposed as a flyby destination for interstellar travel.[110] If non-nuclear, conventional propulsion technologies are used, the flight of a spacecraft to Proxima Centauri and its planets would probably require thousands of years.[111] For example, Voyager 1, which is now travelling 17 km/s (38,000 mph)[112] relative to the Sun, would reach Proxima Centauri in 73,775 years, were the spacecraft travelling in the direction of that star and Proxima was standing still. Proxima's actual galactic orbit means a slow-moving probe would have only several tens of thousands of years to catch the star at its closest approach, before it recedes out of reach.[113]

swing-by's around Proxima Centauri or Alpha Centauri are to be employed.[115] Then the probes would take photos and collect data of the planets of the stars, and their atmospheric compositions. It would take 4.25 years for the information collected to be sent back to Earth.[116]

Explanatory notes

  1. ^ From knowing the absolute visual magnitude of Proxima Centauri, , and the absolute visual magnitude of the Sun, , the visual luminosity of Proxima Centauri can therefore be calculated:
  2. ^ If Proxima Centauri was a later capture into the Alpha Centauri star system then its metallicity and age could be quite different to that of Alpha Centauri A and B. Through comparing Proxima Centauri to other similar stars it was estimated that it had a lower metallicity, ranging from less than a third, to about the same, of our Sun's.[10][11]
  3. ^ Extrasolar planet names are designated following the International Astronomical Union's naming conventions in alphabetical order according to their respective dates of discovery, with 'Proxima Centauri a' being the star itself.
  4. ^ The density (ρ) is given by the mass divided by the volume. Relative to the Sun, therefore, the density is:
    =
    = 0.122 · 0.154−3 · (1.41 × 103 kg/m3)
    = 33.4 · (1.41 × 103 kg/m3)
    = 4.71 × 104 kg/m3

    where is the average solar density. See:

    • Munsell, Kirk; Smith, Harman; Davis, Phil; Harvey, Samantha (11 June 2008). "Sun: facts & figures". Solar system exploration. NASA. Archived from the original on 2 January 2008. Retrieved 12 July 2008.
    • Bergman, Marcel W.; Clark, T. Alan; Wilson, William J. F. (2007). Observing projects using Starry Night Enthusiast (8th ed.). Macmillan. pp. 220–221. .
  5. ^ The standard surface gravity on the Earth is 980.665 cm/s2, for a 'log g' value of 2.992. The difference in logarithms is 5.20 − 2.99 = 2.21, yielding a multiplier of 102.21 = 162. For the Earth's gravity, see:
  6. ^ The coordinates of the Sun would be diametrically opposite Proxima Centauri, at α=02h 29m 42.9487s, δ=+62° 40′ 46.141″. The absolute magnitude Mv of the Sun is 4.83, so at a parallax π of 0.77199 the apparent magnitude m is given by 4.83 − 5(log10(0.77199) + 1) = 0.40. See: Tayler, Roger John (1994). The Stars: Their Structure and Evolution. Cambridge University Press. p. 16. .
  7. ^ Pale Red Dot is a reference to Pale Blue Dot, a distant photo of Earth taken by Voyager 1.
  8. ^ For a star south of the zenith, the angle to the zenith is equal to the Latitude minus the Declination. The star is hidden from sight when the zenith angle is 90° or more, i.e., below the horizon. Thus, for Proxima Centauri:
    Highest latitude = 90° + (−62.68°) = 27.32°.
    See: Campbell, William Wallace (1899). The elements of practical astronomy. London: Macmillan. pp. 109–110. Retrieved 12 August 2008.

References

  1. ^ "Collins English Dictionary". HarperCollins Publishers. Retrieved 30 September 2020.
  2. ^ .
  3. ^ .
  4. .
  5. ^ . Separation: 3.1, left column of page 3; Orbital period and epoch of periastron: Table 3, right column of page 3.
  6. ^ .
  7. ^ . 40.
  8. ^ .
  9. .
  10. .
  11. ^ .
  12. ^ .
  13. . See section 4: "the vsini is probably less than 0.1 km/s for Proxima Centauri".
  14. ^ a b c Kervella, Pierre; Thevenin, Frederic (15 March 2003). "A family portrait of the Alpha Centauri system: VLT interferometer studies the nearest stars". European Southern Observatory. Retrieved 10 May 2016.
  15. ^ "Proxima centauri". SIMBAD. Centre de données astronomiques de Strasbourg. Retrieved 28 April 2022.—some of the data is located under "Measurements".
  16. ^ .
  17. ^ .
  18. ^ .
  19. ^ .
  20. . Retrieved 30 November 2021.
  21. .
  22. .
  23. .
  24. .
  25. ^ Queloz, Didier (29 November 2002). "How Small are Small Stars Really?". European Southern Observatory. Retrieved 5 September 2016.
  26. S2CID 118971274
    .
  27. .
  28. .
  29. .
  30. ^ .
  31. . L28.
  32. ^ a b Adams, Fred C.; Laughlin, Gregory; Graves, Genevieve J. M. Red dwarfs and the end of the main sequence (PDF). Gravitational collapse: from massive stars to planets. Revista Mexicana de Astronomía y Astrofísica. pp. 46–49. Retrieved 24 June 2008.
  33. ^
    S2CID 233307258
    .
  34. ^ .
  35. ^ "Proxima Centauri: the nearest star to the Sun". Harvard-Smithsonian Center for Astrophysics. 30 August 2006. Retrieved 9 July 2007.
  36. .
  37. .
  38. ^ .
  39. .
  40. ^ Pulliam, Christine (12 October 2016). "Proxima Centauri Might Be More Sunlike Than We Thought". Smithsonian Insider. Retrieved 7 July 2020.
  41. S2CID 14672316
    .
  42. .
  43. .
  44. .
  45. ^ .
  46. .
  47. .
  48. .
  49. .
  50. .
  51. ^ Williams, D. R. (10 February 2006). "Moon Fact Sheet". Lunar & Planetary Science. NASA. Retrieved 12 October 2007.
  52. ^ Benedict, G. F.; Mcarthur, B.; Nelan, E.; Story, D.; Jefferys, W. H.; Wang, Q.; Shelus, P. J.; Hemenway, P. D.; Mccartney, J.; Van Altena, Wm. F.; Duncombe, R.; Franz, O. G.; Fredrick, L. W. Astrometric stability and precision of fine guidance sensor #3: the parallax and proper motion of Proxima Centauri (PDF). Proceedings of the HST calibration workshop. pp. 380–384. Retrieved 11 July 2007.
  53. .
  54. .
  55. . A35.
  56. .
  57. .
  58. ^ .
  59. .
  60. .
  61. ^ .
  62. ^ "Proxima Centauri c". Extrasolar Planets Encyclopaedia. Retrieved 30 July 2022.
  63. .
  64. S2CID 17628232. Archived from the original
    (PDF) on 9 March 2019.
  65. .
  66. .
  67. . 91.
  68. .
  69. ^ "Proxima Centauri's no good, very bad day". Science Daily. 26 February 2018. Retrieved 1 March 2018.
  70. S2CID 119287614
    .
  71. .
  72. New York Times
    . Retrieved 24 August 2016.
  73. ^ Knapton, Sarah (24 August 2016). "Proxima b: Alien life could exist on 'second Earth' found orbiting our nearest star in Alpha Centauri system". The Telegraph. Telegraph Media Group. Archived from the original on 12 January 2022. Retrieved 24 August 2016.
  74. ^ "Proxima b is our neighbor ... better get used to it!". Pale Red Dot. 24 August 2016. Archived from the original on 13 May 2020. Retrieved 24 August 2016.
  75. ^ Aron, Jacob. August 24, 2016. Proxima b: Closest Earth-like planet discovered right next door. New Scientist. Retrieved August 24, 2016.
  76. ^ "Follow a Live Planet Hunt!". European Southern Observatory. 15 January 2016. Retrieved 24 August 2016.
  77. ^ Feltman, Rachel (24 August 2016). "Scientists say they've found a planet orbiting Proxima Centauri, our closest neighbor". The Washington Post.
  78. ^ Mathewson, Samantha (24 August 2016). "Proxima b By the Numbers: Possibly Earth-Like World at the Next Star Over". Space.com. Retrieved 25 August 2016.
  79. PMID 27558041
    .
  80. . 12.
  81. ^ a b Billings, Lee (12 April 2019). "A Second Planet May Orbit Earth's Nearest Neighboring Star". Scientific American. Retrieved 12 April 2019.
  82. ^ a b c Wall, Mike (12 April 2019). "Possible 2nd Planet Spotted Around Proxima Centauri". Space.com. Retrieved 12 April 2019.
  83. ^ Benedict, Fritz (2 June 2020). "Texas Astronomer Uses 25-year-old Hubble Data to Confirm Planet Proxima Centauri c". McDonald Observatory. University of Texas.
  84. S2CID 215754278
    .
  85. .
  86. .
  87. .
  88. .
  89. .
  90. ^ O'Callaghan, Jonathan (18 December 2020). "Alien Hunters Discover Mysterious Radio Signal from Proxima Centauri". Scientific American. Retrieved 19 December 2020.
  91. S2CID 239887089
    .
  92. . This is the original Proxima Centauri discovery paper.
  93. ^ .
  94. ^ Queloz, Didier (29 November 2002). "How Small are Small Stars Really?". European Southern Observatory. eso0232; PR 22/02. Retrieved 29 January 2018.
  95. ^ .
  96. .
  97. .
  98. .
  99. .
  100. .
  101. .
  102. ^ "Proxima Centauri UV flux distribution". ESA & The Astronomical Data Centre at CAB. Retrieved 11 July 2007.
  103. ^ Kaler, James B. (7 November 2016). "Rigil Kentaurus". STARS. University of Illinois. Retrieved 3 August 2008.
  104. .
  105. ^ "IAU Working Group on Star Names (WGSN)". International Astronomical Union. Retrieved 22 May 2016.
  106. ^ "Naming Stars". International Astronomical Union. Retrieved 3 March 2018.
  107. ^ "Seeing Stars in 3D: The New Horizons Parallax Program". pluto.jhuapl.edu. Johns Hopkins University Applied Physics Laboratory. 29 January 2020. Retrieved 25 May 2020.
  108. ^ "Parallax measurements for Wolf 359 and Proxima Centauri". German Aerospace Center. Retrieved 19 January 2021.
  109. .
  110. .
  111. ^ Peat, Chris. "Spacecraft escaping the Solar System". Heavens Above. Retrieved 25 December 2016.
  112. ^ a b Beals, K. A.; Beaulieu, M.; Dembia, F. J.; Kerstiens, J.; Kramer, D. L.; West, J. R.; Zito, J. A. (1988). "Project Longshot, an Unmanned Probe to Alpha Centauri" (PDF). NASA-CR-184718. U. S. Naval Academy. Retrieved 13 June 2008.
  113. PMID 27230357
    .
  114. ^ Heller, René; Hippke, Michael (11 July 2023). "Full braking at Alpha Centauri". Max-Planck-Gesellschaft. Retrieved 3 December 2023.
  115. PMID 28150784
    .

Further reading

External links