List of tallest mountains in the Solar System

Source: Wikipedia, the free encyclopedia.

Olympus Mons, the tallest planetary mountain in the Solar System, compared to Mount Everest and Mauna Kea on Earth (heights shown are above datum or sea level, which differ from the base-to-peak heights given in the list).

This is a list of the tallest mountains in the Solar System. This list includes peaks on all

celestial bodies where significant mountains have been detected. For some celestial bodies, different peaks are given across different types of measurement. The solar system's tallest mountain is possibly the Olympus Mons on Mars with an altitude of 21.9 to 26 km. The central peak of Rheasilvia on the asteroid Vesta
is also a candidate to be the tallest, with an estimated at up to between 20 and 25 km from peak to base.

List

Heights are given from base to peak (although a precise definition for mean base level is lacking). Peak elevations above

reference ellipsoid
could be used if enough data is available for the calculation, but this is often not the case.

Planet Tallest peak(s) Base-to-peak height % of radius[n 1] Origin Notes
Mercury Caloris Montes ≤ 3 km (1.9 mi)[2][3] 0.12 impact[4] Formed by the
Caloris impact
Venus Skadi Mons (Maxwell Montes massif) 6.4 km (4.0 mi)[5] (11 km above mean) 0.11 tectonic[6] Has radar-bright slopes due to metallic Venus snow, possibly lead sulfide[7]
Maat Mons 4.9 km (3.0 mi) (approx.)[8] 0.081 volcanic[9] Highest volcano on Venus
Earth[n 2]
Mauna Kea and Mauna Loa 10.2 km (6.3 mi)[11] 0.16 volcanic 4.2 km (2.6 mi) of this is above sea level
Haleakalā 9.1 km (5.7 mi)[12] 0.14 volcanic Rises 3.1 km above sea level[12]
Pico del Teide 7.5 km (4.7 mi)[13] 0.12 volcanic Rises 3.7 km above sea level[13]
Denali 5.3 to 5.9 km (3.3 to 3.7 mi)[14] 0.093 tectonic Tallest mountain base-to-peak on land[15][n 3]
Mount Everest 3.6 to 4.6 km (2.2 to 2.9 mi)[16] 0.072 tectonic 4.6 km on north face, 3.6 km on south face;
prominence (but not among the tallest from base to peak, and in distance to Earth's center Mt Chimborazo
rises highest).
Moon[n 5]
Mons Huygens 5.5 km (3.4 mi)[19][20] 0.32 impact Formed by the
prominence, which would be Selenean summit
.
Mons Hadley 4.5 km (2.8 mi)[19][20] 0.26 impact Formed by the Imbrium impact
Mons Rümker 1.3 km (0.81 mi)[21] 0.063 volcanic Largest volcanic construct on the Moon[21]
Mars
Olympus Mons 21.9–26 km (13.6–16.2 mi; 72,000–85,000 ft)[n 6][22][23][24] 0.65 volcanic Tallest mountain in the
prominence) 1000 km away. Summit calderas are 60 x 80 km wide, up to 3.2 km deep;[24] scarp around margin is up to 8 km high.[26] A shield volcano, the mean flank slope is a modest 5.2 degrees.[23]
Ascraeus Mons 14.9 km (9.3 mi)[23] 0.44 volcanic Tallest of the three Tharsis Montes
Elysium Mons 12.6 km (7.8 mi)[23] 0.37 volcanic Highest volcano in Elysium
Arsia Mons 11.7 km (7.3 mi)[23] 0.35 volcanic Summit caldera is 108 to 138 km (67 to 86 mi) across[23]
Pavonis Mons 8.4 km (5.2 mi)[23] 0.25 volcanic Summit caldera is 4.8 km (3.0 mi) deep[23]
Anseris Mons 6.2 km (3.9 mi)[27] 0.18 impact Among the highest nonvolcanic peaks on Mars, formed by the Hellas impact
Aeolis Mons
("Mount Sharp")
4.5 to 5.5 km (2.8 to 3.4 mi)[28][n 7] 0.16 deposition and erosion[n 8] Formed from deposits in Gale crater;[33] the MSL rover has been ascending it since November 2014.[34]
Vesta Rheasilvia central peak 20–25 km (12–16 mi; 66,000–82,000 ft)[n 9][35][36] 8.4 impact Almost 200 km (120 mi) wide. See also: List of largest craters in the Solar System
Ceres Ahuna Mons 4 km (2.5 mi)[37] 0.85
cryovolcanic[38]
Isolated steep-sided dome in relatively smooth area; max. height of ~ 5 km on steepest side; roughly antipodal to largest impact basin on Ceres
Io Boösaule Montes "South"[39] 17.5 to 18.2 km (10.9 to 11.3 mi)[40] 1.0 tectonic Has a 15 km (9 mi) high scarp on its SE margin[41]
Ionian Mons east ridge 12.7 km (7.9 mi) (approx.)[41][42] 0.70 tectonic Has the form of a curved double ridge
Euboea Montes 10.5 to 13.4 km (6.5 to 8.3 mi)[43] 0.74 tectonic A NW flank landslide left a 25,000 km3 debris apron[44][n 10]
unnamed (245° W, 30° S) 2.5 km (1.6 mi) (approx.)[45][46] 0.14 volcanic One of the tallest of Io's many volcanoes, with an atypical conical form[46][n 11]
Mimas
Herschel central peak 7 km (4 mi) (approx.)[48] 3.5 impact See also: List of largest craters in the Solar System
Dione Janiculum Dorsa 1.5 km (0.9 mi)[49] 0.27 tectonic[n 12] Surrounding crust depressed ca. 0.3 km.
Titan Mithrim Montes ≤ 3.3 km (2.1 mi)[52] 0.13 tectonic[52] May have formed due to global contraction[53]
Doom Mons 1.45 km (0.90 mi)[54] 0.056
cryovolcanic[54]
Adjacent to Sotra Patera, a 1.7 km (1.1 mi) deep collapse feature[54]
Iapetus equatorial ridge 20 km (12 mi) (approx.)[55] 2.7 uncertain[n 13] Individual peaks have not been measured
Oberon unnamed ("limb mountain") 11 km (7 mi) (approx.)[48] 1.4 impact (?) A value of 6 km was given shortly after the Voyager 2 encounter[59]
Pluto Tenzing Montes, peak "T2" ~6.2 km (3.9 mi)[60] 0.52
tectonic[61]
(?)
Composed of water ice;[61] named after Tenzing Norgay[62]
Piccard Mons[63][64]
~5.5 km (3.4 mi)[60] 0.46
cryovolcanic
(?)
~220 km across;[65] central depression is 11 km deep[60]
Wright Mons[63][64] ~4.7 km (2.9 mi)[60] 0.40
cryovolcanic
(?)
~160 km across;[63] summit depression ~56 km across[66] and 4.5 km deep[60]
Charon Butler Mons[67] ≥ 4.5 km (2.8 mi)[67] 0.74
tectonic
(?)
Vulcan Planitia, the southern plains, has several isolated peaks, possibly tilted crustal blocks[67]
Dorothy central peak[67] ~4.0 km (2.5 mi)[67] 0.66 impact North polar impact basin Dorothy, Charon's largest, is ~240 km across and 6 km deep[67]
2002 MS4
unnamed 20–29 km (12–18 mi) 6.3 ? Discovered by
stellar occultation; it is unclear whether this feature may be a genuine topographic peak or a transiting/occulting satellite.[68]

Tallest mountains by elevation

Gallery

The following images are shown in order of decreasing base-to-peak height.

See also

Notes

  1. ^ 100 × ratio of peak height to radius of the parent world
  2. ^ On Earth, mountain heights are constrained by glaciation; peaks are usually limited to elevations not more than 1500 m above the snow line (which varies with latitude). Exceptions to this trend tend to be rapidly forming volcanoes.[10]
  3. ^ On p. 20 of Helman (2005): "the base to peak rise of Mount McKinley is the largest of any mountain that lies entirely above sea level, some 18,000 ft (5,500 m)"
  4. ^ Peak is 8.8 km (5.5 mi) above sea level, and over 13 km (8.1 mi) above the oceanic abyssal plain.
  5. ^ Prominences in crater rims are not typically viewed as peaks and have not been listed here. A notable example is an (officially) unnamed massif on the rim of the farside crater Zeeman that rises about 4.0 km above adjacent parts of the rim and about 7.57 km above the crater floor.[17] The formation of the massif does not appear to be explainable simply on the basis of the impact event.[18]
  6. ^ Due to limitations in the accuracy of the measurements and the lack of a precise definition of "base", it is difficult to say whether this peak or the central peak of Vesta's crater Rheasilvia is the tallest mountain in the Solar System.
  7. ^ About 5.25 km (3.26 mi) high from the perspective of the landing site of Curiosity.[29]
  8. ^ A crater central peak may sit below the mound of sediment. If that sediment was deposited while the crater was flooded, the crater may have once been entirely filled before erosional processes gained the upper hand.[28] However, if the deposition was due to katabatic winds that descend the crater walls, as suggested by reported 3 degree radial slopes of the mound's layers, the role of erosion would have been to place an upper limit on the mound's growth.[30][31] Gravity measurements by Curiosity suggest the crater was never buried by sediment, consistent with the latter scenario.[32]
  9. ^ Due to limitations in the accuracy of the measurements and the lack of a precise definition of "base", it is difficult to say whether this peak or the volcano Olympus Mons on Mars is the tallest mountain in the Solar System.
  10. ^ Among the Solar System's largest[44]
  11. Io's paterae are surrounded by radial patterns of lava flows, indicating they are on a topographic high point, making them shield volcanoes. Most of these volcanoes exhibit relief of less than 1 km. A few have more relief; Ruwa Patera rises 2.5 to 3 km over its 300 km width. However, its slopes are only on the order of a degree.[47] A handful of Io's smaller shield volcanoes have steeper, conical profiles; the example listed is 60 km across and has slopes averaging 4° and reaching 6-7° approaching the small summit depression.[47]
  12. ^ Was apparently formed via contraction.[50][51]
  13. ring around the moon.[58]
  14. ^ A linearized wide-angle hazcam image that makes the mountain look steeper than it actually is. The highest peak is not visible in this view.

References

  1. .
  2. on 30 September 2016. Retrieved 4 April 2012.
  3. .
  4. .
  5. from the original on 16 July 2017. Retrieved 25 October 2016.
  6. .
  7. ^ Otten, Carolyn Jones (10 February 2004). "'Heavy metal' snow on Venus is lead sulfide". Newsroom. Washington University in St. Louis. Archived from the original on 29 January 2016. Retrieved 10 December 2012.
  8. Jet Propulsion Lab. 1 August 1996. Archived
    from the original on 8 March 2016. Retrieved 30 June 2012.
  9. from the original on 1 March 2012. Retrieved 11 February 2013.
  10. .
  11. ^ "Mountains: Highest Points on Earth". National Geographic Society. Archived from the original on 6 March 2012. Retrieved 19 September 2010.
  12. ^ a b "Haleakala National Park Geology Fieldnotes". U.S. National Park Service. Archived from the original on 2 February 2017. Retrieved 31 January 2017.
  13. ^ a b "Teide National Park". UNESCO World Heritage Site list. UNESCO. Archived from the original on 12 June 2022. Retrieved 2 June 2013.
  14. ^ "NOVA Online: Surviving Denali, The Mission". NOVA web site. Public Broadcasting Corporation. 2000. Archived from the original on 20 November 2010. Retrieved 7 June 2007.
  15. from the original on 31 October 2020. Retrieved 9 December 2012.
  16. ^ Robinson, M. (20 November 2017). "Mountains of the Moon: Zeeman Mons". LROC.sese.asu. Arizona State University. Archived from the original on 12 November 2021. Retrieved 5 September 2020.
  17. (PDF) from the original on 9 September 2021. Retrieved 5 September 2020.
  18. ^ .
  19. ^ .
  20. ^ .
  21. .
  22. ^ .
  23. ^ from the original on 24 June 2021. Retrieved 25 October 2016.
  24. from the original on 9 November 2021. Retrieved 23 December 2012.
  25. .
  26. ^ JMARS MOLA elevation dataset. Christensen, P.; Gorelick, N.; Anwar, S.; Dickenshied, S.; Edwards, C.; Engle, E. (2007) "New Insights About Mars From the Creation and Analysis of Mars Global Datasets Archived 5 October 2018 at the Wayback Machine;" American Geophysical Union, Fall Meeting, abstract #P11E-01.
  27. ^ a b "Gale Crater's History Book". Mars Odyssey THEMIS web site. Arizona State University. Archived from the original on 4 November 2008. Retrieved 7 December 2012.
  28. .
  29. ^ Wall, M. (6 May 2013). "Bizarre Mars Mountain Possibly Built by Wind, Not Water". Space.com. Archived from the original on 7 November 2016. Retrieved 13 May 2013.
  30. S2CID 119249853
    .
  31. .
  32. ^ Agle, D. C. (28 March 2012). "'Mount Sharp' On Mars Links Geology's Past and Future". NASA. Archived from the original on 6 March 2017. Retrieved 31 March 2012.
  33. ^ Webster, Gay; Brown, Dwayne (9 November 2014). "Curiosity Arrives at Mount Sharp". NASA Jet Propulsion Laboratory. Archived from the original on 2 December 2014. Retrieved 16 October 2016.
  34. ^ Vega, P. (11 October 2011). "New View of Vesta Mountain From NASA's Dawn Mission". Jet Propulsion Lab's Dawn mission web site. NASA. Archived from the original on 22 October 2011. Retrieved 29 March 2012.
  35. . contribution 1659, id.2757.
  36. from the original on 8 March 2016. Retrieved 8 March 2016.
  37. .
  38. ^ Perry, Jason (27 January 2009). "Boösaule Montes". Gish Bar Times blog. Archived from the original on 23 March 2016. Retrieved 30 June 2012.
  39. ^ Schenk, P.; Hargitai, H. "Boösaule Montes". Io Mountain Database. Archived from the original on 4 March 2016. Retrieved 30 June 2012.
  40. ^
    ISSN 0148-0227
    .
  41. ^ Schenk, P.; Hargitai, H. "Ionian Mons". Io Mountain Database. Archived from the original on 4 March 2016. Retrieved 30 June 2012.
  42. ^ Schenk, P.; Hargitai, H. "Euboea Montes". Io Mountain Database. Archived from the original on 4 March 2016. Retrieved 30 June 2012.
  43. ^ a b Martel, L. M. V. (16 February 2011). "Big Mountain, Big Landslide on Jupiter's Moon, Io". NASA Solar System Exploration web site. Archived from the original on 13 January 2011. Retrieved 30 June 2012.
  44. ISSN 0019-1035
    .
  45. ^ a b Schenk, P.; Hargitai, H. "Unnamed volcanic mountain". Io Mountain Database. Archived from the original on 4 March 2016. Retrieved 6 December 2012.
  46. ^ .
  47. ^ (PDF) from the original on 2 October 2018. Retrieved 4 September 2015.
  48. .
  49. .
  50. ^ Overlooked Ocean Worlds Fill the Outer Solar System Archived 26 December 2018 at the Wayback Machine. John Wenz, Scientific American. 4 October 2017.
  51. ^ a b "PIA20023: Radar View of Titan's Tallest Mountains". Photojournal.jpl.nasa.gov. Jet Propulsion Laboratory. 24 March 2016. Archived from the original on 25 August 2017. Retrieved 25 March 2016.
  52. from the original on 26 January 2020. Retrieved 5 July 2012.
  53. ^ (PDF) from the original on 1 September 2019. Retrieved 1 September 2019.
  54. from the original on 13 March 2020. Retrieved 9 December 2012.
  55. S2CID 20749556. 2005Sci...307.1237P. Archived
    (PDF) from the original on 19 July 2018. Retrieved 13 January 2019.
  56. .
  57. (PDF) from the original on 26 June 2019. Retrieved 9 December 2012.
  58. .
  59. ^ .
  60. ^ .
  61. ^ Pokhrel, Rajan (19 July 2015). "Nepal's mountaineering fraternity happy over Pluto mountains named after Tenzing Norgay Sherpa - Nepal's First Landmark In The Solar System". The Himalayan Times. Archived from the original on 13 August 2015. Retrieved 19 July 2015.
  62. ^ a b c "At Pluto, New Horizons Finds Geology of All Ages, Possible Ice Volcanoes, Insight into Planetary Origins". New Horizons News Center. The Johns Hopkins University Applied Physics Laboratory LLC. 9 November 2015. Archived from the original on 10 November 2015. Retrieved 9 November 2015.
  63. ^ from the original on 10 November 2015. Retrieved 9 November 2015.
  64. ^ "Ice Volcanoes and Topography". New Horizons Multimedia. The Johns Hopkins University Applied Physics Laboratory LLC. 9 November 2015. Archived from the original on 13 November 2015. Retrieved 9 November 2015.
  65. ^ "Ice Volcanoes on Pluto?". New Horizons Multimedia. The Johns Hopkins University Applied Physics Laboratory LLC. 9 November 2015. Archived from the original on 11 September 2017. Retrieved 9 November 2015.
  66. ^
    S2CID 125833113
    .
  67. .

External links