Nitridophosphate

Source: Wikipedia, the free encyclopedia.

A nitridophosphate is an inorganic compound that contains nitrogen bound to a phosphorus atom, considered as replacing oxygen in a phosphate.

Anions include NPN PN3 P3N6. Related compounds include the oxonitridophosphates[1] imidonitridophosphates,[2] nitridoborophosphates,[3] and nitridosilicatephosphates.[4] By changing the phosphorus, related materials include nitridovanadates and nitridorhenates.[5]

Nitridophosphate compounds include elements from the

main group elements.[6]

Characteristics

Nitridophosphate compounds nearly always contain phosphorus in tetrahedral configuration. They can be characterised by the condensation index K which is the ratio of numbers of phosphorus tetrahedral centres to nitrogen vertices. As more nitrogen atoms are shared between phosphorus, condensation increases. The maximum is for P3N5 which no longer has any capacity for cations. For K of 1/2 three dimensional frameworks are produced. For 2/7 or 3/7 layered arrangements of tetrahedra are produced. For 1/3 chains or ring structures are prominent. 1/4 is for uncondensed PN4 compounds. Tow PN4 tetrahedra can also share an edge: P2N6, as the P-N bond is not very polarised, so there is less electrostatic repulsion.[6] Uncondensed compounds are sensitive to air and water but highly condensed compounds are water or acid stable.[6]

Nitridophosphate compounds are usually insulators and are transparent to light.[6]

Formation

Heating P3N5 with a metal nitride at gigapascal pressure and a temperatures of over 1000 °C forms nitridophosphates. P3N5 decomposes over 850°C at ambient pressure. However there are a few nitridophosphates that do no require such high temperatures to form.[7][8]

Heating ammonia under pressure with red phosphorus, and metals, metal nitrides or metal azides is a method called ammonothermal synthesis.[9]

Use

Nitridophosphates are under investigation as luminescent materials, that can covert blue light into red.[8]

List

formula system space group unit cell volume density comment reference
HPN2 tetragonal I42d a = 4.6182 c = 7.0204 Z = 4 [10][11]
HPN3 [12]
β-HP4N7 monoclinic C2/c a = 12.873 b = 4.6587 c = 8.3222 β = 102.351° Z = 4 487.55 3.037 colourless [13]
γ-HP4N7 monoclinic C2/c a=6.82983 b=7.24537 c=8.96504 β = 111.5557° Z = 4 412.604 3.572 high pressure form > 12 GPa; P in trigonal bipyramid [14]
LiPN2 [12]
Li7PN4 cubic P43n a=9.3648 Z=8 tetrahedra [12][15]
β-Li10P4N10 trigonal a=8.71929 c=21.4656 Z=6 1413.3 2.35015 colourless; tetrahedron of 4 tetrahedra [12]
α-Li10P4N10 cubic >80°C [7]
Li5P2N5 monoclinic C2/c a=14.770 b=17.850 c=4.860 β =93.11° layered, high pressure [16]
Li4PN3 orthorhombic Pccn a=9.6597 b=11.8392 c=4.8674 chains [17]
Li12P3N9 monoclinic Cc a=12.094 b=7.649 c=9.711 β=90.53° ring of 3 tetrahedra [12][17]
Li18P6N16 monoclinic P1 a=5.4263 b=7.5354 c=9.8584 α=108.481° β=99.288° γ=104.996° Z=1 355.8 2.496 tricyclic [18]
Li13P4N10Cl3 cubic Fm3m a=13.Z=8 Z=8 2704.27 2.2624 colourless; [7]
Li13P4N10Br3 cubic Fm3m a=14.1096 Z=8 2809.0 2.8088 colourless; [7]
LiP4N7 orthorhombic P212121 a=4.5846 b=8.009 c=13.252 Z=4 485.8 3.130 air stable; grey [19]
Li1.34P6N9.34(NH)1.66 monoclinic P1 a=4.691 b=7.024 c=12.736, α=87.73° β=80.28° γ=70.55° Z=2 390.0 2.988 air stable; grey [19]
BeP2N4 cubic Fd3 a=7.1948 Z=8 372.44 bulk modulus 325 GPa [20]
BP3N6 monoclinic P21/c a=5.027 b=4.5306 c=17.332 β=106.387° Z=4 378.7 3.293 [21]
Li47B3P14N42 trigonal P3c1 a=19.3036 c=18.0200 [22]
NaPN2 [23]
NaP4N7 [19]
Na3P6N11 [19]
Mg2PN3 orthorhombic Cmc21 a=9.723 b=5.6562 c=4.7083 band gap 5.0 eV [12][24]
MgP8N14 orthorhombic a=8.364 b=5.0214 c=23.196 974.3 3.192 [25]
AlP6N11 monoclinic Cm a=4.935 b=8.161 c=9.040 β=98.63° grey; layered; thermal expansion 16.0 ppm/K [26]
Ca2PN3 orthorhombic Cmca a = 5.1914 b =10.3160 c = 11.289 Z = 8 beige; chains [12]
CaP8N14 [25]
Sc5P12N23O3 tetragonal I41/acd a=12.3598 c=24.0151 Z=8 3668.6 3.500 grey [27]
TiP4N8 orthorhombic Pmn21 a=7.6065 b=4.6332 c=7.8601 Z=2 227.01 3.403 [28]
TiP4N8 orthorhombic Pmn21 a=22.9196 b=4.5880 c=8.0970 Z=6 851.44 3.322 [28]
Ti5P12N24O2 tetragonal I41/acd a=a=12.1214 c=23.8458 Z=8 3503.6 3.713 black; Ti3+ & Ti4+ [27]
MnP2N4 hexagonal P6322 a = 16.5543 c = 7.5058 1781.3 [27][29]
FeP8N14 orthorhombic Cmca a=8.2693 = 5.10147 c=23.0776 air stable [30]
CoP8N14 orthorhombic Cmca a=8.25183 b=5.10337 c=22.9675 air stable [30]
NiP8N14 orthorhombic Cmca a=8.23105 b=5.08252 c=22.8516 air stable [30]
CuPN2 tetragonal I42d a = 4.5029 c = 7.6157 154.42 band gap 1.67 eV [23]
Zn2PN3 orthorhombic Cmc21 a = 9.37847 b = 5.47696 c = 4.92396 Z = 4 colourless [31][32]
Zn8P12N24O2 tetragonal I43m a=8.24239 c=8.24239 [33]
Zn8P12N24S2 [33]
Zn8P12N24Se2 [33]
Zn8P12N24Te2 [33]
Zn7P12N24Cl2 sodalite structure [12]
GeP2N4 orthorhombic Pna21 a=9.547 b=7.542 c=4.6941 Z=4 dark grey [34]
Sr3P3N7 monoclinic P2/c a=6.882 b=7.416 c=7.036 β=104.96° Z=2 346.9 4.345 white; decompose in moist air; band gap 4.4 eV [35]
Sr2SiP2N6 orthorhombic C2221 a = 6.0849 b = 8.8203 c = 10.2500 [36]
SrP8N14 [10]
SrP3N5NH monoclinic P21/c a=5.01774 b=8.16912 c=12.70193 β=101.7848° Z=4 [2]
SrH4P6N12 [10]
Sr5Si2P6N16 orthorhombic Pbam a = 9.9136 b = 17.5676 c = 8.3968 [36]
SrAl5P4N10O2F3 tetragonal I4m2 a=11.1685 c=7.8485 Z=2 978.99 3.905 [37]
Sr3P5N10Cl orthorhombic Pnma a=12.240 b=12.953 c=13.427 Z=8 [38]
Sr3P5N10Br orthorhombic Pnma a=12.297 b=12.990 c=13.458 Z=8 [38]
AgPN2 [39]
CdP2N4 hexagonal P6322 a = 16.7197 c = 7.6428 1850.3 [27][29]
InP6N11 grey; layered [26]
BaP2N4 [25]
Ba3P5N10Cl orthorhombic Pnma [38]
Ba3P5N10Br orthorhombic Pnma [38]
BaSr2P6N12 cubic Pa3 a=10.0639 Z=4 1019.3 4.343 [25]
La2P3N7 monoclinic C2/c [35][40]
Ce2P3N7 monoclinic C2/c [35][40]
Ce4Li3P18N35 hexagonal P63/m a=13.9318 c=8.1355 [41]
Pr2P3N7 monoclinic C2/c a = 7.8006 b = 10.2221 c = 7.7798 β = 111.299° Z = 4 [35][40]
Nd2P3N7 P421m [35][40]
LiNdP4N8 orthorhombic Pnma a=8.7305 b=7.8783 c=9.0881 [42]
Sm2P3N7 P421m [35][40]
Eu2P3N7 P421m [35][40]
Ho2P3N7 P421m a = 7.3589 c = 4.9986 Z = 2 [35][40]
Ho3[PN4]O tetragonal I4/mcm a = 6.36112 c = 10.5571 Z = 4 [43]
Yb2P3N7 P421m [35][40]
Hf9−xP24N52−4xO4x (x≈1.84) I41/acd a=12.4443 c=23.7674 Z=4 3680.6 [44]

References