Tetrasulfur tetranitride

Source: Wikipedia, the free encyclopedia.
Tetrasulfur tetranitride
Stereo, skeletal formula of tetrasulfur tetranitride with some measurements
Ball and stick model of tetrasulfur tetranitride
Ball and stick model of tetrasulfur tetranitride
Space-filling model of tetrasulfur tetranitride
Space-filling model of tetrasulfur tetranitride
Names
IUPAC name
Tetrasulfur tetranitride
Systematic IUPAC name
1,3,5,7-tetrathia-2,4,6,8-tetraazacyclooctan-2,4,6,8-tetrayl
Other names
Identifiers
3D model (
JSmol
)
ChemSpider
UNII
  • InChI=1S/N4S4/c1-5-2-7-4-8-3-6-1 checkY
    Key: LTPQFVPQTZSJGS-UHFFFAOYSA-N checkY
  • N1=[S]N=[S]N=[S]N=[S]1
Properties
S4N4
Molar mass 184.287 g/mol
Appearance Vivid orange, opaque crystals
Melting point 187 °C (369 °F; 460 K)
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
☒N verify (what is checkY☒N ?)

Tetrasulfur tetranitride is an inorganic compound with the formula S4N4. This gold-poppy[clarification needed] coloured solid is the most important binary sulfur nitride, which are compounds that contain only the elements sulfur and nitrogen. It is a precursor to many S-N compounds and has attracted wide interest for its unusual structure and bonding.[1][2]

Nitrogen and sulfur have similar

covalently
bonded structures and compounds. Indeed, a large number of S-N and S-NH compounds are known with S4N4 as their parent.

Structure

S4N4 adopts an unusual “extreme cradle” structure, with D2d

delocalized, which is indicated by the fact that the bond distances between neighboring sulfur and nitrogen atoms are nearly identical. S4N4 has been shown to co-crystallize with benzene and the C60 molecule.[5]

Properties

S4N4 is stable to

endothermic
enthalpy of formation originates in the difference in energy of S4N4 compared to its highly stable decomposition products:

2 S4N4 → 4 N2 + S8

Because one of its decomposition products is a gas, S4N4 can be used as an explosive.

thermochromic, changing from pale yellow below −30 °C to orange at room temperature to deep red above 100 °C.[1]

Synthesis

S4N4 was first prepared in 1835 by M. Gregory by the reaction of disulfur dichloride with ammonia,[6] a process that has been optimized:[7]

6 S2Cl2 + 16 NH3 → S4N4 + S8 + 12 [NH4]Cl

Coproducts of this reaction include heptasulfur imide (S7NH) and elemental sulfur. A related synthesis employs [NH4]Cl instead:[1]

4 [NH4]Cl + 6 S2Cl2 → S4N4 + 16 HCl + S8

An alternative synthesis entails the use of (((CH3)3Si)2N)2S as a precursor with pre-formed S–N bonds. (((CH3)3Si)2N)2S is prepared by the reaction of lithium bis(trimethylsilyl)amide and SCl2.

2 ((CH3)3Si)2NLi + SCl2 → (((CH3)3Si)2N)2S + 2 LiCl

The (((CH3)3Si)2N)2S reacts with the combination of SCl2 and SO2Cl2 to form S4N4, trimethylsilyl chloride, and sulfur dioxide:[8]

2 (((CH3)3Si)2N)2S + 2 SCl2 + 2 SO2Cl2 → S4N4 + 8 (CH3)3SiCl + 2 SO2

Acid-base reactions

S4N4·BF3

S4N4 serves as a

adducts.[1]

S4N4 + SbCl5 → S4N4·SbCl5
S4N4 + SO3 → S4N4·SO3

The reaction of [Pt2Cl4(P(CH3)2

Ph
)2] with S4N4 is reported to form a complex where a sulfur forms a dative bond to the metal. This compound upon standing is isomerised to a complex in which a nitrogen atom forms the additional bond to the metal centre.

It is protonated by

salt:

S4N4 + H[BF4] → [S4N4H]+[BF4]

The soft Lewis acid CuCl forms a coordination polymer:[1]

n S4N4 + n CuCl → (S4N4)n-μ-(−Cu−Cl−)n

Dilute NaOH hydrolyzes S4N4 as follows, yielding thiosulfate and trithionate:[1]

2 S4N4 + 6 OH + 9 H2O → S2O2−3 + 2 S3O2−6 + 8 NH3

More concentrated base yields sulfite:

S4N4 + 6 OH + 3 H2O → S2O2−3 + 2 SO2−3 + 4 NH3

Metal complexes

S4N4 reacts with metal complexes. The cage remains intact in some cases but in other cases, it is degraded.

Ph3)2] in an oxidative addition reaction to form a six coordinate iridium
complex where the S4N4 binds through two sulfur atoms and one nitrogen atom.

S4N4 as a precursor to other S-N compounds

Many S-N compounds are prepared from S4N4.[10] Reaction with piperidine generates [S4N5]:

24 S4N4 + 32 C5H10NH → 8 [C5H10NH2]+[S4N5] + 8 (C5H10N)2S + 3 S8 + 8 N2

A related

cation
is also known, i.e. [S4N5]+.

Treatment with tetramethylammonium azide produces the heterocycle [S3N3]:

8 S4N4 + 8 [(CH3)4N]+[N3] → 8 [(CH3)4N]+[S3N3] + S8 + 16 N2

Cyclo-[S3N3] has 10 pi-electrons.

In a related reaction, the use of the

bis(triphenylphosphine)iminium azide gives a salt containing the blue [NS4] anion:[10]

4 S4N4 + 2 [PPN]+[N3] → 2 [PPN]+[NS4] + S8 + 10 N2

The anion [NS4] has a chain structure described using the resonance [S=S=N−S−S] ↔ [S−S−N=S=S].

S4N4 reacts with electron-poor alkynes.[11]

Chlorination of S4N4 gives

thiazyl chloride
.

Passing gaseous S4N4 over

superconductor polythiazyl or polysulfurnitride (transition temperature (0.26±0.03) K[12]), often simply called "(SN)x". In the conversion, the silver first becomes sulfided, and the resulting Ag2S catalyzes the conversion of the S4N4 into the four-membered ring S2N2, which readily polymerizes.[1]

S4N4 + 8 Ag → 4 Ag2S + 2 N2
x S4N4 → (SN)4x

Related compounds

Safety

S4N4 is shock-sensitive. Purer samples are more shock-sensitive than those contaminated with elemental sulfur.[7]

References

  1. ^ a b c d e f g h i Greenwood, N. N.; Earnshaw, A. (1997). Chemical Elements (2nd ed.). Boston, MA: Butterworth-Heinemann. pp. 721–725.
  2. ^ .
  3. .
  4. .
  5. .
  6. .
  7. ^ .
  8. .
  9. .
  10. ^ .
  11. .
  12. .