Planetary surface

Source: Wikipedia, the free encyclopedia.
lunar regolith (photographed by Neil Armstrong
, July 1969).
OSIRIS-REx collecting a surface sample from asteroid 101955 Bennu in 2020
(Full-sized image)

A planetary surface is where the solid or liquid material of certain types of

atmospheric sciences, and astronomy. Land (or ground) is the term given to non-liquid planetary surfaces. The term landing
is used to describe the collision of an object with a planetary surface and is usually at a velocity in which the object can remain intact and remain attached.

In

gas dwarfs
, transition contiguously between phases, including gas, liquid, and solid. As such, they are generally regarded as lacking surfaces.

Planetary surfaces and surface life are of particular interest to

space probes
.

Indirect observations by flyby or orbit currently provide insufficient information to confirm the composition and properties of planetary surfaces. Much of what is known is from the use of techniques such as

sample return. Lander spacecraft have explored the surfaces of planets Mars and Venus. Mars is the only other planet to have had its surface explored by a mobile surface probe (rover). Titan is the only non-planetary object of planetary mass to have been explored by lander. Landers have explored several smaller bodies including 433 Eros (2001), 25143 Itokawa (2005), Tempel 1 (2005), 67P/Churyumov–Gerasimenko (2014), 162173 Ryugu (2018) and 101955 Bennu
(2020). Surface samples have been collected from the Moon (returned 1969), 25143 Itokawa (returned 2010), 162173 Ryugu and 101955 Bennu.

Distribution and conditions

Planetary surfaces are found throughout the

seismic
activity. Some surfaces are dynamic while others remain unchanged for millions of years.

Exploration

First self-propelled flying extraterrestrial probe Ingenuity on Mars, hovering over its serface and being watched by its parent rover Perseverance rover.

Distance, gravity, atmospheric conditions (extremely low or extremely high

Sample return missions
allow scientist to study extraterrestrial surface materials on Earth without having to send a crewed mission, however is generally only feasible for objects with low gravity and atmosphere.

Past missions

The first extraterrestrial planetary surface to be explored was the

lunar surface by Luna 2 in 1959. The first and only human exploration of an extraterrestrial surface was the Moon, the Apollo program included the first moonwalk on July 20, 1969, and successful return of extraterrestrial surface samples to Earth. Venera 7 was the first landing of a probe on another planet on December 15, 1970. Mars 3 "soft landed" and returned data from Mars on August 22, 1972, the first rover on Mars was Mars Pathfinder in 1997, the Mars Exploration Rover has been studying the surface of the red planet since 2004. NEAR Shoemaker was the first to soft land on an asteroid – 433 Eros in February 2001 while Hayabusa was the first to return samples from 25143 Itokawa on 13 June 2010. Huygens soft landed and returned data from Titan
on January 14, 2005.

There have been many failed attempts, more recently Fobos-Grunt, a sample return mission aimed at exploring the surface of Phobos.

Forms

The surfaces of Solar System objects, other than the four

gas planets
, are mostly solid, with few having liquid surfaces.

In general terrestrial planets have either surfaces of ice, or surface crusts of rock or regolith, with distinct terrains. Water ice predominates surfaces in the Solar System beyond the frost line in the Outer Solar System, with a range of icy celestial bodies. Rock and regolith is common in the Inner Solar System until Mars.

The only Solar System object having a mostly liquid surface is Earth, with its global

Earth's surface, filling its oceanic basins and covering Earth's oceanic crust, making Earth an ocean world. The remaining part of its surface consists of rocky or organic carbon and silicon rich compounds
.

Perspective radar view of Titan's Bolsena Lacus (lower right) and other northern hemisphere hydrocarbon lakes

Liquid water as surface, beside on Earth, has only been found, as seasonal flows on warm Martian slopes, as well as past occurrences, and suspected at the habitable zones of other planetary systems. Surface liquid of any kind, has been found notably on Titan, having large methane lakes, some of which are the largest known lakes in the Solar System.

Volcanism can cause flows such as lava on the surface of geologically active bodies (the largest being the Amirani (volcano) flow on Io). Many of Earth's Igneous rocks are formed through processes rare elsewhere, such as the presence of volcanic magma and water. Surface mineral deposits such as olivine and hematite discovered on Mars by lunar rovers provide direct evidence of past stable water on the surface of Mars.

Apart from water, many other abundant surface materials are unique to Earth in the Solar System as they are not only

List of artificial objects on extra-terrestrial surfaces
).

Extraterrestrial Organic compounds

Increasingly organic compounds are being found on objects throughout the Solar System. While unlikely to indicate the presence of extraterrestrial life, all known life is based on these compounds. Complex carbon molecules may form through various complex chemical interactions or delivered through impacts with small solar system objects and can combine to form the "building blocks" of Carbon-based life. As organic compounds are often volatile, their persistence as a solid or liquid on a planetary surface is of scientific interest as it would indicate an intrinsic source (such as from the object's interior) or residue from larger quantities of organic material preserved through special circumstances over geological timescales, or an extrinsic source (such as from past or recent collision with other objects).[6] Radiation makes the detection of organic matter difficult, making its detection on atmosphereless objects closer to the Sun extremely difficult.[7]

Examples of likely occurrences include:

On Mars

Martian exploration including samples taken by on the ground rovers and spectroscopy from orbiting satellites have revealed the presence of a number of complex organic molecules, some of which could be biosignatures in the search for life.

On Ceres

On Enceladus

On Comet 67P

The space probe Philae (spacecraft) discovered the following organic compounds on the surface of Comet 67P:.[24][25][26]

Inorganic materials

Namib Desert
on Earth (top), compared with dunes in Belet on Titan

The following is a non-exhaustive list of surface materials that occur on more than one planetary surface along with their locations in order of distance from the Sun. Some have been detected by spectroscopy or direct imaging from orbit or flyby.

Rare inorganics

Carbon Ices

Landforms

Pluto's Tombaugh Regio (photographed by New Horizons flyby on July 14, 2015) appears to exhibit geomorphological features previously thought to be unique to Earth.[52]

Common rigid surface features include:

Surface of gas giants

Normally, gas giants are considered to not have a surface, although they might have a solid core of rock or various types of ice, or a liquid core of metallic hydrogen. However, the core, if it exists, does not include enough of the planet's mass to be actually considered a surface. Some scientists consider the point at which the atmospheric pressure is equal to 1 bar, equivalent to the atmospheric pressure at Earth's surface, to be the surface of the planet,[1] if the planet has no clear rigid terrain. Therefore the location of the surface of terrestrial planets do not depend on an atmospheric pressure of 1 Bar, even if for example Venus has a thick atmosphere with pressures at Venus's surface increasing well above Earth's atmospheric pressure.

Life

Planetary surfaces are investigated for the presence of past or present extraterrestrial life. Thomas Gold expanded the field by advancing the possibility of life and a so-called deep biosphere below the surface of a celestial body, and not only on the surface.[53]

Surface chauvinism and surfacism

Furthermore, Thomas Gold has criticized science which only focuses on the surface and not below in its search of life as surface chauvinism.[53]

Similarly the focus on surface bound and territorial

of Mars, has been named surfacism, neglecting interest for atmospheres and potential atmospheric human habitation, such as above the surface of Venus.[54][55]

Gallery

See also

References

  1. Bibcode:1996psi..work.....M. Retrieved 2012-02-10.{{cite book}}: CS1 maint: location missing publisher (link
    )
  2. ^ "Planetary Surface materials". Haskin Research Group. Retrieved 2012-02-10.
  3. .
  4. ^ "Venera 9's landing site". The Planetary Society. Retrieved 16 September 2020.
  5. ^ "Venera 9's landing site". The Planetary Society. Retrieved 16 September 2020.
  6. PMID 21220279
    .
  7. .
  8. .
  9. .
  10. .
  11. S2CID 1761936.{{cite journal}}: CS1 maint: multiple names: authors list (link
    )
  12. .
  13. .
  14. .
  15. .
  16. accessed 28 Feb. 2018).
  17. .
  18. .
  19. ^ .
  20. .
  21. .
  22. .
  23. ^ .
  24. ^ Jordans, Frank (30 July 2015). "Philae probe finds evidence that comets can be cosmic labs". The Washington Post. Associated Press. Archived from the original on 23 December 2018. Retrieved 30 July 2015.
  25. ^ "Science on the Surface of a Comet". European Space Agency. 30 July 2015. Retrieved 30 July 2015.
  26. PMID 26228139
    .
  27. ^ Williams, David R. (10 December 2012). "Ice on the Moon". NASA.
  28. ^ Choi, Charles Q. (December 15, 2016) Water Ice Found On Dwarf Planet Ceres, Hidden in Permanent Shadow. Space.com]
  29. ^ Moskowitz, Clara (2010-04-28). "Water Ice Discovered on Asteroid for First Time". Space.com. Retrieved 2018-08-20.
  30. ^ "Europa: Another Water World?". Project Galileo: Moons and Rings of Jupiter. NASA, Jet Propulsion Laboratory. 2001. Archived from the original on 21 July 2011. Retrieved 9 August 2007.
  31. ^ McKinnon, William B.; Kirk, Randolph L. (2007). "Triton". In Lucy Ann Adams McFadden; Lucy-Ann Adams; Paul Robert Weissman; Torrence V. Johnson (eds.). Encyclopedia of the Solar System (2nd ed.). Amsterdam; Boston: Academic Press. pp. 483–502. .
  32. .
  33. .
  34. .
  35. ^ "Flowing nitrogen ice glaciers seen on surface of Pluto after New Horizons flyby". ABC. 25 July 2015. Retrieved 6 October 2015.
  36. .
  37. .
  38. ^ Deziel, Chris (April 25, 2017). "Salt on Other Planets". Sciencing.
  39. ^ Clays On Mars: More Plentiful Than Expected. Science Daily. December 20, 2012
  40. .
  41. .
  42. ^ "Clay-Like Minerals Found on Icy Crust of Europa". JPL, NASA.gov. December 11, 2013.
  43. S2CID 26740165
    .
  44. ^ Clark, B. C; Arvidson, R. E; Gellert, R; et al. (2007). "Evidence for montmorillonite or its compositional equivalent in Columbia Hills, Mars" (PDF). .
  45. ^ Landau, Elizabeth; Greicius, Tony (29 June 2016). "Recent Hydrothermal Activity May Explain Ceres' Brightest Area". NASA. Retrieved 30 June 2016.
  46. ^ Lewin, Sarah (29 June 2016). "Mistaken Identity: Ceres Mysterious Bright Spots Aren't Epsom Salt After All". Space.com. Retrieved 2016-06-30.
  47. S2CID 4465999
    .
  48. .
  49. ^ a b c Grundy, W. M.; Young, L. A.; Spencer, J. R.; Johnson, R. E.; Young, E. F.; Buie, M. W. (October 2006). "Distributions of H2O and CO2 ices on Ariel, Umbriel, Titania, and Oberon from IRTF/SpeX observations". Icarus. 184 (2): 543–555.
    S2CID 12105236
    .
  50. ^ .
  51. .
  52. ^ Gipson, Lillian (24 July 2015). "New Horizons Discovers Flowing Ices on Pluto". NASA. Retrieved 24 July 2015.
  53. ^ .
  54. ^ Tickle, Glen (2015-03-05). "A Look Into Whether Humans Should Try to Colonize Venus Instead of Mars". Laughing Squid. Retrieved 2021-09-01.
  55. ^ David Warmflash (14 March 2017). "Colonization of the Venusian Clouds: Is 'Surfacism' Clouding Our Judgement?". Vision Learning. Retrieved 20 September 2019.