Proton emission

Source: Wikipedia, the free encyclopedia.
The decay of a proton rich nucleus A populates excited states of a daughter nucleus B by β+ emission or electron capture (EC). Those excited states that lie below the separation energy for protons (Sp) decay by γ emission towards the ground state of daughter B. For the higher excited states a competitive decay channel of proton emission to the granddaughter C exists, called β-delayed proton emission.

Proton emission (also known as proton radioactivity) is a rare type of radioactive decay in which a

tunnels out of the nucleus in a finite time. The rate of proton emission is governed by the nuclear, Coulomb, and centrifugal potentials of the nucleus, where centrifugal potential affects a large part of the rate of proton emission. The half-life of a nucleus with respect to proton emission is affected by the proton energy and its orbital angular momentum.[1] Proton emission is not seen in naturally occurring isotopes; proton emitters can be produced via nuclear reactions, usually using linear particle accelerators
.

Although prompt (i.e. not beta-delayed) proton emission was observed from an isomer in

quantum tunneling
.

In 2002, the simultaneous emission of two protons was observed from the nucleus

zinc-54 can also undergo double proton decay.[4]

See also

References

  1. .
  2. .
  3. ^ Armand, Dominique (June 6, 2002). "A new mode of radioactive decay". CNRS. Archived from the original on 4 February 2005. Retrieved 2022-01-07.
  4. S2CID 119276805
    .

External links