Solar flare

Part of a series of articles about |
Heliophysics |
---|
![]() |
A solar flare is a relatively intense, localized emission of electromagnetic radiation in the Sun's atmosphere. Flares occur in active regions and are often, but not always, accompanied by coronal mass ejections, solar particle events, and other eruptive solar phenomena. The occurrence of solar flares varies with the 11-year solar cycle.
Solar flares are thought to occur when stored magnetic energy in the Sun's atmosphere accelerates charged particles in the surrounding plasma. This results in the emission of electromagnetic radiation across the electromagnetic spectrum. The typical time profile of these emissions features three identifiable phases: a precursor phase, an impulsive phase when particle acceleration dominates, and a gradual phase in which hot plasma injected into the corona by the flare cools by a combination of radiation and conduction of energy back down to the lower atmosphere.
The
Flares also occur on other stars, where the term stellar flare applies.
Physical description

Solar flares are eruptions of
Flares occur in
Associated with solar flares are flare sprays.[6] They involve faster ejections of material than eruptive prominences,[7] and reach velocities of 20 to 2000 kilometers per second.[8]
Cause
Flares occur when accelerated charged particles, mainly electrons, interact with the plasma medium. Evidence suggests that the phenomenon of magnetic reconnection leads to this extreme acceleration of charged particles.[9] On the Sun, magnetic reconnection may happen on solar arcades – a type of prominence consisting of a series of closely occurring loops following magnetic lines of force.[10] These lines of force quickly reconnect into a lower arcade of loops leaving a helix of magnetic field unconnected to the rest of the arcade. The sudden release of energy in this reconnection is the origin of the particle acceleration. The unconnected magnetic helical field and the material that it contains may violently expand outwards forming a coronal mass ejection.[11] This also explains why solar flares typically erupt from active regions on the Sun where magnetic fields are much stronger.
Although there is a general agreement on the source of a flare's energy, the mechanisms involved are not well understood. It is not clear how the magnetic energy is transformed into the kinetic energy of the particles, nor is it known how some particles can be accelerated to the GeV range (109 electron volt) and beyond. There are also some inconsistencies regarding the total number of accelerated particles, which sometimes seems to be greater than the total number in the coronal loop.[12]
Post-eruption loops and arcades

After the eruption of a solar flare, post-eruption loops made of hot plasma begin to form across the neutral line separating regions of opposite magnetic polarity near the flare's source. These loops extend from the photosphere up into the corona and form along the neutral line at increasingly greater distances from the source as time progresses.[14] The existence of these hot loops is thought to be continued by prolonged heating present after the eruption and during the flare's decay stage.[15]
In sufficiently powerful flares, typically of C-class or higher, the loops may combine to form an elongated arch-like structure known as a post-eruption arcade. These structures may last anywhere from multiple hours to multiple days after the initial flare.[14] In some cases, dark sunward-traveling plasma voids known as supra-arcade downflows may form above these arcades.[16]
Frequency
The frequency of occurrence of solar flares varies with the 11-year solar cycle. It can typically range from several per day during solar maxima to less than one every week during solar minima. Additionally, more powerful flares are less frequent than weaker ones. For example, X10-class (severe) flares occur on average about eight times per cycle, whereas M1-class (minor) flares occur on average about 2000 times per cycle.[17]
The
Classification
Soft X-ray

The modern classification system for solar flares uses the letters A, B, C, M, or X, according to the peak
Classification | Peak flux range (W/m2) |
---|---|
A | < 10−7 |
B | 10−7 – 10−6 |
C | 10−6 – 10−5 |
M | 10−5 – 10−4 |
X | > 10−4 |
The strength of an event within a class is noted by a numerical suffix ranging from 1 up to, but excluding, 10, which is also the factor for that event within the class. Hence, an X2 flare is twice the strength of an X1 flare, an X3 flare is three times as powerful as an X1. M-class flares are a tenth the size of X-class flares with the same numeric suffix.[23] An X2 is four times more powerful than an M5 flare.[24] X-class flares with a peak flux that exceeds 10−3 W/m2 may be noted with a numerical suffix equal to or greater than 10.
This system was originally devised in 1970 and included only the letters C, M, and X. These letters were chosen to avoid confusion with other optical classification systems. The A and B classes were added in the 1990s as instruments became more sensitive to weaker flares. Around the same time, the backronym moderate for M-class flares and extreme for X-class flares began to be used.[25]
Importance
An earlier classification system, sometimes referred to as the flare importance, was based on
Classification | Corrected area (millionths of hemisphere) |
---|---|
S | < 100 |
1 | 100–250 |
2 | 250–600 |
3 | 600–1200 |
4 | > 1200 |
A flare is then classified taking S or a number that represents its size and a letter that represents its peak intensity, v.g.: Sn is a normal sunflare.[26]
Duration
A common measure of flare duration is the full width at half maximum (FWHM) time of flux in the soft X-ray bands 0.05 to 0.4 and 0.1 to 0.8 nm measured by GOES. The FWHM time spans from when a flare's flux first reaches halfway between its maximum flux and the background flux and when it again reaches this value as the flare decays. Using this measure, the duration of a flare ranges from approximately tens of seconds to several hours with a median duration of approximately 6 and 11 minutes in the 0.05 to 0.4 and 0.1 to 0.8 nm bands, respectively.[27][28]
Flares can also be classified based on their duration as either impulsive or long duration events (LDE). The time threshold separating the two is not well defined. The SWPC regards events requiring 30 minutes or more to decay to half maximum as LDEs, whereas Belgium's Solar-Terrestrial Centre of Excellence regards events with duration greater than 60 minutes as LDEs.[29][30]
Effects
The electromagnetic radiation emitted during a solar flare propagates away from the Sun at the
Solar flares also affect other objects in the Solar System. Research into these effects has primarily focused on the
Ionosphere

Enhanced XUV irradiance during solar flares can result in increased
Flare-associated XUV photons interact with and ionize neutral constituents of planetary atmospheres via the process of
Radio blackouts
The temporary increase in ionization of the daylight side of Earth's atmosphere, in particular the D layer of the ionosphere, can interfere with short-wave radio communications that rely on its level of ionization for skywave propagation. Skywave, or skip, refers to the propagation of radio waves reflected or refracted off of the ionized ionosphere. When ionization is higher than normal, radio waves get degraded or completely absorbed by losing energy from the more frequent collisions with free electrons.[1][35]
The level of ionization of the atmosphere correlates with the strength of the associated solar flare in soft X-ray radiation. The Space Weather Prediction Center, a part of the United States National Oceanic and Atmospheric Administration, classifies radio blackouts by the peak soft X-ray intensity of the associated flare.
Classification | Associated SXR class |
Description[17] |
---|---|---|
R1 | M1 | Minor radio blackout |
R2 | M5 | Moderate radio blackout |
R3 | X1 | Strong radio blackout |
R4 | X10 | Severe radio blackout |
R5 | X20 | Extreme radio blackout |
Solar flare effect

During non-flaring or solar quiet conditions,
Health
Low Earth orbit
For astronauts in
Mars
The impacts of solar flare radiation on Mars are relevant to
Observational history
Flares produce radiation across the electromagnetic spectrum, although with different intensity. They are not very intense in visible light, but they can be very bright at particular spectral lines. They normally produce bremsstrahlung in X-rays and synchrotron radiation in radio.[48]
Optical observations

Solar flares were first observed by
Since flares produce copious amounts of radiation at
Radio observations
During
Space telescopes
Because the Earth's atmosphere absorbs much of the electromagnetic radiation emitted by the Sun with wavelengths shorter than 300 nm, space-based telescopes allowed for the observation of solar flares in previously unobserved high-energy spectral lines. Since the 1970s, the GOES series of satellites have been continuously observing the Sun in soft X-rays, and their observations have become the standard measure of flares, diminishing the importance of the H-alpha classification. Additionally, space-based telescopes allow for the observation of extremely long wavelengths—as long as a few kilometres—which cannot propagate through the ionosphere.
Examples of large solar flares

The most powerful flare ever observed is thought to be the flare associated with the 1859 Carrington Event.[54] While no soft X-ray measurements were made at the time, the magnetic crochet associated with the flare was recorded by ground-based magnetometers allowing the flare's strength to be estimated after the event. Using these magnetometer readings, its soft X-ray class has been estimated to be greater than X10[55] and around X45 (±5).[56][57]
In modern times, the largest solar flare measured with instruments occurred on
Prediction
Current methods of flare prediction are problematic, and there is no certain indication that an active region on the Sun will produce a flare. However, many properties of active regions and their sunspots correlate with flaring. For example, magnetically complex regions (based on line-of-sight magnetic field) referred to as delta spots frequently produce the largest flares. A simple scheme of sunspot classification based on the McIntosh system for sunspot groups, or related to a region's fractal complexity[62] is commonly used as a starting point for flare prediction.[63] Predictions are usually stated in terms of probabilities for occurrence of flares above M- or X-class within 24 or 48 hours. The U.S. National Oceanic and Atmospheric Administration (NOAA) issues forecasts of this kind.[64] MAG4 was developed at the University of Alabama in Huntsville with support from the Space Radiation Analysis Group at Johnson Space Flight Center (NASA/SRAG) for forecasting M- and X-class flares, CMEs, fast CME, and solar energetic particle events.[65] A physics-based method that can predict imminent large solar flares was proposed by Institute for Space-Earth Environmental Research (ISEE), Nagoya University.[66]
See also
References
- ^ a b "Solar Flares (Radio Blackouts)". NOAA/NWS Space Weather Prediction Center. Retrieved 11 November 2021.
- ^ .
- ISSN 2397-3366.
- . Retrieved 2024-05-17.
- S2CID 21203102.
- ^ Morimoto, Tarou; Kurokawa, Hiroki (31 May 2002). Effects of Magnetic and Gravity forces on the Acceleration of Solar Filaments and Coronal Mass Ejections (PDF). 地球惑星科学関連学会2002年合同大会 2002 Joint Conference of Earth and Planetary Science Related Societies (in Japanese). Tokyo. Archived from the original (PDF) on 11 June 2011. Retrieved 8 October 2009.
- S2CID 122385884.
- ^ "Biggest Solar Flare on Record". Visible Earth. NASA. 15 May 2001.
- .
- .
- ^ Holman, Gordon D. (1 April 2006). "The Mysterious Origins of Solar Flares". Scientific American. Retrieved 17 October 2023.
- ISSN 0004-637X.
- ^ Handy, Brian; Hudson, Hugh (14 July 2000). "Super Regions". Montana State University Solar Physics Group. Retrieved 23 December 2021.
- ^ S2CID 121487634. Retrieved 23 December 2021.
- S2CID 121291767. Retrieved 23 December 2021.
- S2CID 119273860.
- ^ a b "NOAA Space Weather Scales". NOAA/NWS Space Weather Prediction Center. Retrieved 20 November 2021.
- S2CID 4348672.
- Bibcode:1987AZh....64..443K.
- .
- .
- ISBN 978-3-642-15001-2.
- ^ Garner, Rob (6 September 2017). "Sun Erupts With Significant Flare". NASA. Retrieved 2 June 2019.
- ISBN 978-1107049048.
- .
- ^ Tandberg-Hanssen, Einar; Emslie, A. Gordon (1988). The Physics of Solar Flares. Cambridge University Press.
- S2CID 85517195.
- S2CID 237709521.
- ^ "Space Weather Glossary". NOAA/NWS Space Weather Prediction Center. Retrieved 18 April 2022.
- ^ "The duration of solar flares". Solar-Terrestrial Centre of Excellence. Retrieved 18 April 2022.
- ^ .
- .
- .
- doi:10.1086/430521.
- ^ ISBN 978-94-010-2233-0.
- ^ "The Impact of Flares". RHESSI Web Site. NASA. Retrieved 23 December 2021.
- .
- .
- .
- .
- .
- Australian Bureau of MeteorologySpace Weather Forecasting Centre. Retrieved 12 May 2022.
- S2CID 226442270.
- S2CID 214067105. Retrieved 14 June 2022.
- .
- .
- .
- Bibcode:1964NASSP..50..117W.
- .
- ^ .
- .
- PMID 28653670.
- ^ "Extreme Space Weather Events". National Geophysical Data Center. Archived from the original on May 22, 2012. Retrieved May 21, 2012.
- ^ Bell, Trudy E.; Phillips, Tony (6 May 2008). "A Super Solar Flare". Science News. NASA Science. Archived from the original on 12 April 2010. Retrieved 22 December 2012.
- S2CID 120093108.
- ^ Woods, Tom. "Solar Flares" (PDF). Archived (PDF) from the original on 23 October 2015. Retrieved 24 November 2019.
- . Retrieved 31 December 2023.
- ^ "X-Whatever Flare! (X 28)". SOHO Hotshots. ESA/NASA. 4 November 2003. Retrieved 21 May 2012.
- ^ "Biggest ever solar flare was even bigger than thought | SpaceRef – Your Space Reference". SpaceRef. 2004-03-15. Archived from the original on 2012-09-10. Retrieved May 21, 2012.
- ISSN 2115-7251.
- S2CID 54878789.
- doi:10.1086/432412.
- S2CID 10273389.
- ^ "Forecasts". NOAA/NWS Space Weather Prediction Center. Retrieved 17 October 2023.
- hdl:2060/20100032971.
- PMID 32732427.
External links
- 's near real-time solar flare data and resources: