Educational technology: Difference between revisions

Source: Wikipedia, the free encyclopedia.
Content deleted Content added
Report bugs here. | Suggested by AManWithNoPlan | Category:CS1 maint: DOI inactive as of December 2020 | via #UCB_Category 13/111
Floridada (talk | contribs)
→‎External links: link to helpful article about integrating technology into classroom
Tag: Reverted
Line 453: Line 453:
{{wikiversity|Teaching and Learning Online}}
{{wikiversity|Teaching and Learning Online}}
{{Wikiversity|Educational Technology}}
{{Wikiversity|Educational Technology}}
*{{cite web |last1=Newlin |first1=Timothy |title=How We Navigated a Hybrid Remote Learning Environment Using Wolfram Technology |url=https://blog.wolfram.com/2021/01/14/how-we-navigated-a-hybrid-remote-learning-environment-using-wolfram-technology/ |website=Wolfram Blog|date=14 January 2021}}
*{{Commons category-inline|Educational technology}}
*{{Commons category-inline|Educational technology}}



Revision as of 18:33, 21 January 2021

Educational technology (commonly abbreviated as EduTech, or EdTech) is the combined use of computer hardware, software, and educational theory and practice to facilitate learning.[1] When referred to with its abbreviation, EdTech, it is often referring to the industry of companies that create educational technology.[2][3]

In addition to practical educational experience, educational technology is based on theoretical knowledge from various disciplines such as communication, education, psychology, sociology, artificial intelligence, and computer science.[4][full citation needed] It encompasses several domains including learning theory, computer-based training, online learning, and m-learning, where mobile technologies are used.

Definition

The Association for Educational Communications and Technology (AECT) defined educational technology as "the study and ethical practice of facilitating learning and improving performance by creating, using and managing appropriate technological processes and resources".[5] It denoted instructional technology as "the theory and practice of design, development, utilization, management, and evaluation of processes and resources for learning".[6][7][8] As such, educational technology refers to all valid and reliable applied education sciences, such as equipment, as well as processes and procedures that are derived from scientific research, and in a given context may refer to theoretical, algorithmic or heuristic processes: it does not necessarily imply physical technology. Educational technology is the process of integrating technology into education in a positive manner that promotes a more diverse learning environment and a way for students to learn how to use technology as well as their common assignments.

Accordingly, there are several discrete aspects to describing the intellectual and technical development of educational technology:

Related terms

elementary school

Educational technology is an inclusive term for both the material tools and the theoretical foundations for supporting

online learning.[10]

An educational technologist is someone who is trained in the field of educational technology. Educational technologists try to analyze, design, develop, implement, and evaluate process and tools to enhance learning.[11] While the term educational technologist is used primarily in the United States, learning technologist is synonymous and used in the UK[12] as well as Canada.

Modern electronic educational technology is an important part of society today.

virtual learning environments (VLE) (which are also called learning platforms), m-learning
, ubiquitous learning and digital education.

Each of these numerous terms has had its advocates, who point up potential distinctive features.[15] However, many terms and concepts in educational technology have been defined nebulously; for example, Fiedler's review of the literature found a complete lack agreement of the components of a personal learning environment. Moreover, Moore saw these terminologies as emphasizing particular features such as digitization approaches, components or delivery methods rather than being fundamentally dissimilar in concept or principle.[15] For example, m-learning emphasizes mobility, which allows for altered timing, location, accessibility and context of learning; nevertheless, its purpose and conceptual principles are those of educational technology.[15]

In practice, as technology has advanced, the particular "narrowly defined" terminological aspect that was initially emphasized by name has blended into the general field of educational technology.

videoconferencing.[18] Virtual education and simulated learning opportunities, such as games or dissections, offer opportunities for students to connect classroom content to authentic situations.[19]

Educational content, pervasively embedded in objects, is all around the learner, who may not even be conscious of the learning process.[20] The combination of adaptive learning, using an individualized interface and materials, which accommodate to an individual, who thus receives personally differentiated instruction, with ubiquitous access to digital resources and learning opportunities in a range of places and at various times, has been termed smart learning.[21][22][23] Smart learning is a component of the smart city concept.[24][25]

History

19th-century classroom, Auckland

Helping people and children learn in ways that are easier, faster, more accurate, or less expensive can be traced back to the emergence of very early tools, such as paintings on cave walls.

Writing slates and blackboards have been used for at least a millennium.[28] From their introduction, books and pamphlets have held a prominent role in education. From the early twentieth century, duplicating machines such as the mimeograph and Gestetner stencil devices were used to produce short copy runs (typically 10–50 copies) for classroom or home use. The use of media for instructional purposes is generally traced back to the first decade of the 20th century[29] with the introduction of educational films (1900s) and Sidney Pressey's mechanical teaching machines (1920s). The first all multiple choice, large-scale assessment was the Army Alpha, used to assess the intelligence and, more specifically, the aptitudes of World War I military recruits. Further large-scale use of technologies was employed in training soldiers during and after WWII using films and other mediated materials, such as overhead projectors. The concept of hypertext is traced to the description of memex
by Vannevar Bush in 1945.

Cuisenaire rods

Slide projectors were widely used during the 1950s in educational institutional settings. Cuisenaire rods were devised in the 1920s and saw widespread use from the late 1950s.

In the mid-1960s,

is descended from those early experiments.

Online education originated from the

MIT began providing online classes free of charge. As of 2009, approximately 5.5 million students were taking at least one class online. Currently, one out of three college students takes at least one online course while in college. At DeVry University, out of all students that are earning a bachelor's degree, 80% earn two-thirds of their requirements online. Also, in 2014, 2.85 million students out of 5.8 million students that took courses online, took all of their courses online. From this information, it can be concluded that the number of students taking classes online is on the steady increase.[32][33]

Multimedia space, Moldova Alliance Française

In 1971, Ivan Illich published a hugely influential book, Deschooling Society, in which he envisioned "learning webs" as a model for people to network the learning they needed. The 1970s and 1980s saw notable contributions in computer-based learning by Murray Turoff and Starr Roxanne Hiltz at the New Jersey Institute of Technology[34] as well as developments at the University of Guelph in Canada.[35] In the UK, the Council for Educational Technology supported the use of educational technology, in particular administering the government's National Development Programme in Computer Aided Learning[36] (1973–77) and the Microelectronics Education Programme (1980–86).

By the mid-1980s, accessing course content became possible at many college libraries. In computer-based training (CBT) or computer-based learning (CBL), the learning interaction was between the student and computer drills or micro-world simulations.

Digitized communication and networking in education started in the mid-1980s. Educational institutions began to take advantage of the new medium by offering distance learning courses using computer networking for information. Early e-learning systems, based on computer-based learning/training often replicated autocratic teaching styles whereby the role of the e-learning system was assumed to be for transferring knowledge, as opposed to systems developed later based on

computer supported collaborative learning
(CSCL), which encouraged the shared development of knowledge.

Videoconferencing was an important forerunner to the educational technologies known today. This work was especially popular with museum education. Even in recent years, videoconferencing has risen in popularity to reach over 20,000 students across the United States and Canada in 2008–2009. Disadvantages of this form of educational technology are readily apparent: image and sound quality is often grainy or pixelated; videoconferencing requires setting up a type of mini-television studio within the museum for broadcast, space becomes an issue, and specialised equipment is required for both the provider and the participant.[37]

The Open University in Britain[35] and the University of British Columbia (where Web CT, now incorporated into Blackboard Inc., was first developed) began a revolution of using the Internet to deliver learning,[38] making heavy use of web-based training, online distance learning and online discussion between students.[39] Practitioners such as Harasim (1995)[40] put heavy emphasis on the use of learning networks.

With the advent of World Wide Web in the 1990s, teachers embarked on the method using emerging technologies to employ multi-object oriented sites, which are text-based online virtual reality systems, to create course websites along with simple sets of instructions for its students.

By 1994, the first online high school had been founded. In 1997, Graziadei described criteria for evaluating products and developing technology-based courses that include being portable, replicable, scalable, affordable, and having a high probability of long-term cost-effectiveness.[41]

Improved Internet functionality enabled new schemes of communication with multimedia or webcams. The National Center for Education Statistics estimate the number of K-12 students enrolled in online distance learning programs increased by 65 percent from 2002 to 2005, with greater flexibility, ease of communication between teacher and student, and quick lecture and assignment feedback.

According to a 2008 study conducted by the U.S Department of Education, during the 2006–2007 academic year about 66% of postsecondary public and private schools participating in student financial aid programs offered some distance learning courses; records show 77% of enrollment in for-credit courses with an online component.[citation needed] In 2008, the Council of Europe passed a statement endorsing e-learning's potential to drive equality and education improvements across the EU.[42]

Computer-mediated communication (CMC) is between learners and instructors, mediated by the computer. In contrast, CBT/CBL usually means individualized (self-study) learning, while CMC involves educator/tutor facilitation and requires scenarization of flexible learning activities. In addition, modern ICT provides education with tools for sustaining learning communities and associated knowledge management tasks.

Students growing up in this digital age have extensive exposure to a variety of media.[43][44] Major high-tech companies have funded schools to provide them the ability to teach their students through technology.[45]

2015 was the first year that private nonprofit organizations enrolled more online students than for-profits, although public universities still enrolled the highest number of online students. In the fall of 2015, more than 6 million students enrolled in at least one online course.[46]

In 2020, due to the

Unesco have listed educational technology solutions to help schools facilitate distance education.[48]

Theory

Various

constructivism
.

Behaviorism

This theoretical framework was developed in the early 20th century based on animal learning experiments by

B.F. Skinner. Many psychologists used these results to develop theories of human learning, but modern educators generally see behaviorism as one aspect of a holistic synthesis. Teaching in behaviorism has been linked to training, emphasizing the animal learning experiments. Since behaviorism consists of the view of teaching people how to do something with rewards and punishments, it is related to training people.[49]

developed a learning system, named Celeration, that was based on behavior analysis but that substantially differed from Keller's and Skinner's models.

Cognitivism

Atkinson-Shiffrin memory model and Baddeley's working memory model were established as theoretical frameworks. Computer Science and Information Technology have had a major influence on Cognitive Science theory. The Cognitive concepts of working memory (formerly known as short-term memory) and long-term memory have been facilitated by research and technology from the field of Computer Science. Another major influence on the field of Cognitive Science is Noam Chomsky. Today researchers are concentrating on topics like cognitive load, information processing, and media psychology. These theoretical perspectives influence instructional design.[56]

There are two separate schools of cognitivism, and these are the cognitivist and social cognitivist. The former focuses on the understanding of the thinking or cognitive processes of an individual while the latter includes social processes as influences in learning besides cognition.[57] These two schools, however, share the view that learning is more than a behavioral change but as a mental process used by the learner.[57]

Constructivism

Educational psychologists distinguish between several types of

constructivism has a primary focus on how learners construct their own meaning from new information, as they interact with reality and with other learners who bring different perspectives. Constructivist learning environments require students to use their prior knowledge and experiences to formulate new, related, and/or adaptive concepts in learning (Termos, 2012[58]). Under this framework the role of the teacher becomes that of a facilitator, providing guidance so that learners can construct their own knowledge. Constructivist educators must make sure that the prior learning experiences are appropriate and related to the concepts being taught. Jonassen (1997) suggests "well-structured" learning environments are useful for novice learners and that "ill-structured" environments are only useful for more advanced learners. Educators utilizing a constructivist perspective may emphasize an active learning environment that may incorporate learner centered problem-based learning, project-based learning, and inquiry-based learning, ideally involving real-world scenarios, in which students are actively engaged in critical thinking activities. An illustrative discussion and example can be found in the 1980s deployment of constructivist cognitive learning in computer literacy, which involved programming as an instrument of learning.[59]: 224  LOGO, a programming language, embodied an attempt to integrate Piagetan ideas with computers and technology.[59][60] Initially there were broad, hopeful claims, including "perhaps the most controversial claim" that it would "improve general problem-solving skills" across disciplines.[59]: 238  However, LOGO programming skills did not consistently yield cognitive benefits.[59]: 238  It was "not as concrete" as advocates claimed, it privileged "one form of reasoning over all others," and it was difficult to apply the thinking activity to non-LOGO-based activities.[61] By the late 1980s, LOGO and other similar programming languages had lost their novelty and dominance and were gradually de-emphasized amid criticisms.[62]

Practice

The extent to which e-learning assists or replaces other learning and teaching approaches is variable, ranging on a continuum from none to fully

distance learning environments.[63]

Synchronous and asynchronous

E-learning may either be synchronous or asynchronous. Synchronous learning occurs in real-time, with all participants interacting at the same time, while asynchronous learning is self-paced and allows participants to engage in the exchange of ideas or information without the dependency of other participants′ involvement at the same time.[67]

Synchronous learning refers to the exchange of ideas and information with one or more participants during the same period. Examples are face-to-face discussion, online real-time live teacher instruction and feedback, Skype conversations, and chat rooms or virtual classrooms where everyone is online and working collaboratively at the same time. Since students are working collaboratively, synchronized learning helps students become more open-minded because they have to actively listen and learn from their peers. Synchronized learning fosters online awareness and improves many students' writing skills.[68]

social networking using web 2.0. At the professional educational level, training may include virtual operating rooms. Asynchronous learning is beneficial for students who have health problems or who have child care responsibilities. They have the opportunity to complete their work in a low-stress environment and within a more flexible time frame.[39] In asynchronous online courses, students are allowed the freedom to complete work at their own pace. Being a non-traditional student, they can manage their daily life and school with and still have the social aspect. Asynchronous collaborations allow the student to reach out for help when needed and provides helpful guidance, depending on how long it takes them to complete the assignment. Many tools used for these courses are but not limited to: videos, class discussions, and group projects.[71]
Through online courses, students can earn their diplomas faster, or repeat failed courses without being in a class with younger students. Students have access to an incredible variety of enrichment courses in online learning, and still participate in college courses, internships, sports, or work and still graduate with their class.

Linear learning

Computer-based training (CBT) refers to self-paced learning activities delivered on a computer or handheld device such as a tablet or smartphone. CBT initially delivered content via CD-ROM, and typically presented content linearly, much like reading an online book or manual.[72] For this reason, CBT is often used to teach static processes, such as using software or completing mathematical equations. Computer-based training is conceptually similar to web-based training (WBT), which is delivered via Internet using a web browser.

Assessing learning in a CBT is often by assessments that can be easily scored by a computer such as multiple-choice questions, drag-and-drop, radio button, simulation or other interactive means. Assessments are easily scored and recorded via online software, providing immediate end-user feedback and completion status. Users are often able to print completion records in the form of certificates.[72]

CBTs provide learning stimulus beyond traditional learning methodology from textbook, manual, or classroom-based instruction. CBTs can be a good alternative to printed learning materials since rich media, including videos or animations, can be embedded to enhance the learning.[72]

However, CBTs pose some learning challenges. Typically, the creation of effective CBTs requires enormous resources. The software for developing CBTs is often more complex than a subject matter expert or teacher is able to use.[72] The lack of human interaction can limit both the type of content that can be presented and the type of assessment that can be performed and may need supplementation with online discussion or other interactive elements.

Collaborative learning

Computer-supported collaborative learning (CSCL) uses instructional methods designed to encourage or require students to work together on learning tasks, allowing social learning. CSCL is similar in concept to the terminology, "e-learning 2.0" and "networked collaborative learning" (NCL).[73] With Web 2.0 advances, sharing information between multiple people in a network has become much easier and use has increased.[72][74]: 1 [75] One of the main reasons for its usage states that it is "a breeding ground for creative and engaging educational endeavors."[74]: 2  Learning takes place through conversations about content and grounded interaction about problems and actions. This collaborative learning differs from instruction in which the instructor is the principal source of knowledge and skills.[72] The neologism "e-learning 1.0" refers to direct instruction used in early computer-based learning and training systems (CBL). In contrast to that linear delivery of content, often directly from the instructor's material, CSCL uses social software such as blogs, social media, wikis, podcasts, cloud-based document portals, and discussion groups and virtual worlds.[76] This phenomenon has been referred to as Long Tail Learning.[77] Advocates of social learning claim that one of the best ways to learn something is to teach it to others.[77] Social networks have been used to foster online learning communities around subjects as diverse as test preparation and language education. mobile-assisted language learning (MALL) is the use of handheld computers or cell phones to assist in language learning.

Collaborative apps allow students and teachers to interact while studying. Apps are designed after games, which provide a fun way to revise. When the experience is enjoyable, the students become more engaged. Games also usually come with a sense of progression, which can help keep students motivated and consistent while trying to improve.[78]

Classroom 2.0 refers to online

multi-user virtual environments (MUVEs) that connect schools across geographical frontiers. Known as "eTwinning", computer-supported collaborative learning (CSCL) allows learners in one school to communicate with learners in another that they would not get to know otherwise,[79][80] enhancing educational outcomes[81]
and cultural integration.

Further, many researchers distinguish between collaborative and cooperative approaches to group learning. For example, Roschelle and Teasley (1995) argue that "cooperation is accomplished by the division of labour among participants, as an activity where each person is responsible for a portion of the problem solving", in contrast with collaboration that involves the "mutual engagement of participants in a coordinated effort to solve the problem together."[82]

Flipped classroom

This is an instructional strategy in which computer-assisted teaching is integrated with classroom instruction. Students are given basic essential instruction, such as lectures, before class instead of during class. Instructional content is delivered outside of the classroom, often online. The out-of-class delivery includes streaming video, reading materials, online chats, and other resources.[83] This frees up classroom time for teachers to more actively engage with learners.[84]

Technologies

A 2.5m teaching slide rule compared to a normal sized model

Educational media and tools can be used for:

  • task structuring support: help with how to do a task (procedures and processes),
  • access to knowledge bases (help user find information needed)
  • alternate forms of knowledge representation (multiple representations of knowledge, e.g. video, audio, text, image, data)

Numerous types of physical technology are currently used:

virtual classrooms
.

The current design of this type of applications includes the evaluation through tools of cognitive analysis that allow to identify which elements optimize the use of these platforms.[87]

Audio and video

Preparation for training teachers on the subject of Wikipedia - Center for Educational Technology

Video technology

Telecommuting can connect with speakers and other experts. Interactive digital video games are being used at K-12 and higher education institutions.[89]

Radio offers a synchronous educational vehicle, while streaming audio over the internet with webcasts and podcasts can be asynchronous. Classroom microphones, often wireless, can enable learners and educators to interact more clearly.

Screencasting allows users to share their screens directly from their browser and make the video available online so that other viewers can stream the video directly.[90] The presenter thus has the ability to show their ideas and flow of thoughts rather than simply explain them as simple text content. In combination with audio and video, the educator can mimic the one-on-one experience of the classroom. Learners have the ability to pause and rewind, to review at their own pace, something a classroom cannot always offer.

virtual learning environment.[91]
Webcams are also being used to counter plagiarism and other forms of academic dishonesty that might occur in an e-learning environment.

Computers, tablets and mobile devices

Teaching and learning online

Collaborative learning is a group-based learning approach in which learners are mutually engaged in a coordinated fashion to achieve a learning goal or complete a learning task. With recent developments in smartphone technology, the processing powers and storage capabilities of modern mobiles allow for advanced development and the use of apps. Many app developers and education experts have been exploring smartphone and tablet apps as a medium for collaborative learning.

Computers and tablets enable learners and educators to access websites as well as applications. Many mobile devices support m-learning.[92]

Mobile devices such as

clickers and smartphones can be used for interactive audience response feedback.[93] Mobile learning can provide performance support for checking the time, setting reminders, retrieving worksheets, and instruction manuals.[94][95]

Such devices as iPads are used for helping disabled (visually impaired or with multiple disabilities) children in communication development as well as in improving physiological activity, according to the iStimulation Practice Report.[96]

Computers in the classroom have been shown to increase rates of engagement and interest when computers and

better source needed
]

Collaborative and social learning

Group webpages,

Social networking sites are virtual communities for people interested in a particular subject to communicate by voice, chat, instant message, video conference, or blogs.[101] The National School Boards Association found that 96% of students with online access have used social networking technologies, and more than 50% talk online about schoolwork. Social networking encourages collaboration and engagement[102] and can be a motivational tool for self-efficacy amongst students.[103]

Combination whiteboard and bulletin board

Whiteboards

groupware for virtual meetings, collaboration, and instant messaging. Interactive whiteboards allow learners and instructors to write on the touch screen. The screen markup can be on either a blank whiteboard or any computer screen content. Depending on permission settings, this visual learning can be interactive and participatory, including writing and manipulating images on the interactive whiteboard.[104]

Virtual classroom