Type I hypersensitivity
Type I hypersensitivity | |
---|---|
Other names | Immediate hypersensitivity |
![]() | |
Image showing the mechanism of activation of type 1 hypersensitivity in a mast cell. | |
Specialty | Immunology |
Type I hypersensitivity (or immediate hypersensitivity), in the
Exposure may be by ingestion, inhalation, injection, or direct contact.
Pathophysiology
In type I hypersensitivity,

Type I hypersensitivity can be further classified into immediate and late-phase reactions. Within minutes of exposure to an antigen, the immediate hypersensitivity occurs, releasing histamines and lipid mediators which are responsible for the initial allergic reaction response. However, about 4-12 hours after antigen exposure, a cough and wheezing may persist in the patient, along with swelling and redness of the skin. This is known as the late-phase hypersensitivity reaction which can last from approximately 1-3 days and is caused by the release of additional mediators from the mast cells and basophils.[5]
Vasodilation and increased permeability |
| |
---|---|---|
Smooth muscle spasm |
| |
Leukocyte extravasation |
| |
Unless otherwise specified, the reference for this table is:[6] |
The reaction may be either local or systemic. Symptoms vary from mild irritation to sudden death from anaphylactic shock.
Treatment and prognosis
If multiple systems are involved, then anaphylaxis can take place, which is an acute, systemic reaction that can prove fatal.
Treatment usually involves
Examples
Some examples:
- Allergic asthma
- Allergic conjunctivitis
- Allergic rhinitis ("hay fever")
- Anaphylaxis
- Angioedema
- Urticaria(hives)
- Eosinophilia
- Penicillin allergy
- Cephalosporin allergy
- Food allergy
- Sweet itch
See also
References
- ^ med/1101 at eMedicine
- PMID 11164991.
- ^ "The Adaptive Immune System: Type I Immediate Hypersensitivity". Archived from the original on 2010-07-27. Retrieved 2008-09-22.
- ^ PMID 25452755.
This release of pre-formed mediators enables not only rapid anaphylactic reactions and allergic responses but also initiates recruitment of leukocytes to sites of pathogen invasion, activation of innate immune processes, and inflammatory responses (1). ... Two types of degranulation have been described for MC: piecemeal degranulation (PMD) and anaphylactic degranulation (AND) (Figures 1 and 2). Both PMD and AND occur in vivo, ex vivo, and in vitro in MC in human (78–82), mouse (83), and rat (84). PMD is selective release of portions of the granule contents, without granule-to-granule and/or granule-to-plasma membrane fusions. ... In contrast to PMD, AND is the explosive release of granule contents or entire granules to the outside of cells after granule-to-granule and/or granule-to-plasma membrane fusions (Figures 1 and 2). Ultrastructural studies show that AND starts with granule swelling and matrix alteration after appropriate stimulation (e.g., FcεRI-crosslinking).
Figure 1: Mediator release from mast cells
Figure 2: Model of genesis of mast cell secretory granules
Figure 3: Lipid body biogenesis
Table 2: Stimuli-selective mediator release from mast cells - PMID 32809396, retrieved 2024-03-15
- ISBN 978-1-4160-2973-1. 8th edition.
- ^ Kemp, S. F., Lockey, R. F., Simons, F. E., & World Allergy Organization ad hoc Committee on Epinephrine in Anaphylaxis (2008). Epinephrine: the drug of choice for anaphylaxis-a statement of the world allergy organization. The World Allergy Organization journal, 1(7 Suppl), S18–S26. https://doi.org/10.1097/WOX.0b013e31817c9338. “The β-adrenergic properties of epinephrine cause bronchodilation… Epinephrine administration enhances coronary blood flow…”
- ^ "Recognizing and Treating Reaction Symptoms - FoodAllergy.org". www.foodallergy.org. Retrieved 2024-03-15.