Very Large Scale Integration

Source: Wikipedia, the free encyclopedia.
(Redirected from
VLSI
)

Very-large-scale integration (VLSI) is the process of creating an

memory chips
are VLSI devices.

Before the introduction of VLSI technology, most ICs had a limited set of functions they could perform. An electronic circuit might consist of a CPU, ROM, RAM and other glue logic. VLSI enables IC designers to add all of these into one chip.

A VLSI integrated-circuit die

History

Background

The

solid-state devices
.

With the small transistor at their hands, electrical engineers of the 1950s saw the possibilities of constructing far more advanced circuits. However, as the complexity of circuits grew, problems arose.[1] One problem was the size of the circuit. A complex circuit like a computer was dependent on speed. If the components were large, the wires interconnecting them must be long. The electric signals took time to go through the circuit, thus slowing the computer.[1]

The invention of the integrated circuit by Jack Kilby and Robert Noyce solved this problem by making all the components and the chip out of the same block (monolith) of semiconductor material. The circuits could be made smaller, and the manufacturing process could be automated. This led to the idea of integrating all components on a single-crystal silicon wafer, which led to small-scale integration (SSI) in the early 1960s, and then medium-scale integration (MSI) in the late 1960s.

VLSI

General Microelectronics introduced the first commercial MOS integrated circuit in 1964.[2] In the early 1970s, MOS integrated circuit technology allowed the integration of more than 10,000 transistors in a single chip.[3]
This paved the way for VLSI in the 1970s and 1980s, with tens of thousands of MOS transistors on a single chip (later hundreds of thousands, then millions, and now billions).

The first semiconductor chips held two transistors each. Subsequent advances added more transistors, and as a consequence, more individual functions or systems were integrated over time. The first integrated circuits held only a few devices, perhaps as many as ten diodes, transistors, resistors and capacitors, making it possible to fabricate one or more logic gates on a single device. Now known retrospectively as small-scale integration (SSI), improvements in technique led to devices with hundreds of logic gates, known as medium-scale integration (MSI). Further improvements led to large-scale integration (LSI), i.e. systems with at least a thousand logic gates. Current technology has moved far past this mark and today's microprocessors have many millions of gates and billions of individual transistors.

At one time, there was an effort to name and calibrate various levels of large-scale integration above VLSI. Terms like ultra-large-scale integration (ULSI) were used. But the huge number of gates and transistors available on common devices has rendered such fine distinctions moot. Terms suggesting greater than VLSI levels of integration are no longer in widespread use.

In 2008, billion-transistor processors became commercially available. This became more commonplace as semiconductor fabrication advanced from the then-current generation of

design automation and automated logic synthesis to lay out the transistors, enabling higher levels of complexity in the resulting logic functionality. Certain high-performance logic blocks like the SRAM (static random-access memory) cell, are still designed by hand to ensure the highest efficiency.[citation needed
]

Structured design

Structured VLSI design is a modular methodology originated by Carver Mead and Lynn Conway for saving microchip area by minimizing the interconnect fabric area. This is obtained by repetitive arrangement of rectangular macro blocks which can be interconnected using wiring by abutment. An example is partitioning the layout of an adder into a row of equal bit slices cells. In complex designs this structuring may be achieved by hierarchical nesting.[4]

Structured VLSI design had been popular in the early 1980s, but lost its popularity later[

Edsger Dijkstra's structured programming
approach by procedure nesting to avoid chaotic spaghetti-structured programs.

Difficulties

As microprocessors become more complex due to technology scaling, microprocessor designers have encountered several challenges which force them to think beyond the design plane, and look ahead to post-silicon:

See also

References

  1. ^ a b "The History of the Integrated Circuit". Nobelprize.org. Archived from the original on 29 Jun 2018. Retrieved 21 Apr 2012.
  2. ^ "1964: First Commercial MOS IC Introduced". Computer History Museum.
  3. JSTOR 24923169
    .
  4. . Retrieved 2 May 2017.

Further reading

External links

This page is based on the copyrighted Wikipedia article: VLSI. Articles is available under the CC BY-SA 3.0 license; additional terms may apply.Privacy Policy