Торий

Материал из Википедии — свободной энциклопедии
Торий
← Актиний | Протактиний →
90 Ce

Th

Периодическая система элементовВодородГелийЛитийБериллийБорУглеродАзотКислородФторНеонНатрийМагнийАлюминийКремнийФосфорСераХлорАргонКалийКальцийСкандийТитанВанадийХромМарганецЖелезоКобальтНикельМедьЦинкГаллийГерманийМышьякСеленБромКриптонРубидийСтронцийИттрийЦирконийНиобийМолибденТехнецийРутенийРодийПалладийСереброКадмийИндийОловоСурьмаТеллурИодКсенонЦезийБарийЛантанЦерийПразеодимНеодимПрометийСамарийЕвропийГадолинийТербийДиспрозийГольмийЭрбийТулийИттербийЛютецийГафнийТанталВольфрамРенийОсмийИридийПлатинаЗолотоРтутьТаллийСвинецВисмутПолонийАстатРадонФранцийРадийАктинийТорийПротактинийУранНептунийПлутонийАмерицийКюрийБерклийКалифорнийЭйнштейнийФермийМенделевийНобелийЛоуренсийРезерфордийДубнийСиборгийБорийХассийМейтнерийДармштадтийРентгенийКоперницийНихонийФлеровийМосковийЛиверморийТеннессинОганесон
Периодическая система элементов
90Th
Внешний вид простого вещества
Металлический торий
Свойства атома
Название, символ, номер Торий / Thorium (Th), 90
период
, блок
3 (устар. IIIB), 7,
f-элемент
Атомная масса
(молярная масса)
232,03806(2)[1] а. е. м. (г/моль)
Электронная конфигурация [Rn] 6d27s2
Радиус атома 180 пм
Химические свойства
Ковалентный радиус 165 пм
Радиус иона (+4e) 102 пм
Электроотрицательность 1,3 (шкала Полинга)
Степени окисления +2, +3, +4
Энергия ионизации
(первый электрон)
670,4 (6,95) кДж/моль (эВ)
Термодинамические свойства простого вещества
Плотность (при н. у.) 11,78 г/см³
Температура плавления 2028 К (1754,85 °С)
Температура кипения 5060 К (4786,85 °С)
Мол. теплота плавления 16,11 кДж/моль
Мол. теплота испарения 513,7 кДж/моль
Молярная теплоёмкость 26,23[2] Дж/(K·моль)
Молярный объём 19,8 см³/моль
Кристаллическая решётка простого вещества
Структура решётки Кубическая
гранецентрированая
Параметры решётки
5,080 Å
Температура Дебая 100,00 K
Прочие характеристики
Теплопроводность (300 K) (54,0) Вт/(м·К)
Номер CAS 7440-29-1
90
Торий
232,0377
6d27s2

То́рий (

атомным номером
90.

Относится к семейству актиноидов.

Простое вещество торий — тяжёлый слаборадиоактивный металл серебристого-белого цвета
.

История

Впервые торий выделен

Тора
.

Нахождение в природе

Торий почти всегда содержится в минералах

слюды, (флогопит, мусковит и др.) — породообразующих минералов гранита. Поэтому граниты некоторых месторождений ввиду слабой, но при длительном воздействии на человека опасной радиации запрещено использовать в качестве наполнителя для бетона при строительстве жилых зданий либо (в зависимости от удельной активности) для строительства производственных сооружений и даже для строительства дорог вне населённых пунктов[3]
.

Месторождения

Торий содержится в основном в 12 минералах.

Месторождения этих минералов известны в

.

Добыча

При получении тория торийсодержащие монацитовые концентраты подвергают вскрытию при помощи кислот или щелочей. Редкоземельные элементы извлекают

тетрафторида
.

Металлический торий затем выделяют из галогенидов или оксида методом металлотермии (кальций-, магний- или натрийтермии) при 900—1000 °С:

электролизом ThF4 или KThF5 в расплаве KF при 800 °С на графитовом аноде.

Цена тория уменьшилась до 73,37

USD/кг (2009), по сравнению с 96,55 USD/кг (2008).[5]

Физические свойства

Полная электронная конфигурация атома тория: 1s22s22p63s23p64s23d104p65s24d105p66s24f145d106p66d27s2.

Торий — серебристо-белый блестящий, мягкий, ковкий металл. Металл пирофорен, потому порошок тория рекомендуют хранить в керосине. На воздухе чистый металл медленно тускнеет и темнеет, при нагревании воспламеняется и горит ярко белым пламенем с образованием диоксида. Относительно медленно корродирует в холодной воде, в горячей воде скорость коррозии тория и сплавов на его основе очень высока.

До 1360 °C торий образует кристаллы кубической сингонии (гранецентрированная решётка), параметры ячейки a = 0,50842 нм (α-торий). Выше этой температуры (при 1360…1750 °C) устойчива модификация с кубической объёмно-центрированной решёткой с а = 0,411 нм (β-торий). Энтальпия перехода ΔH(α→β) = 3,5 кДж/моль[2].

При температуре ниже 1,4 К торий переходит в сверхпроводящее состояние.

Температура плавления 1750 °C; температура кипения 4788 °C. Энтальпия плавления 19,2 кДж/моль, испарения 513,7 кДж/моль. Работа выхода электронов 3,51 эВ. Энергии ионизации M → M+, M+ → M2+, M2+ → M3+, M3+ → M4+ составляют 587, 1110, 1978 и 2780 кДж/моль соответственно.

Изотопы

На 2012 год известны 30 изотопов тория и ещё 3 возбуждённых метастабильных состояния некоторых его нуклидов.

Только один из нуклидов тория (торий-232) обладает достаточно большим периодом полураспада по отношению к возрасту Земли, поэтому практически весь природный торий состоит только из этого нуклида. Некоторые из его изотопов могут определяться в природных образцах в следовых количествах, так как входят в радиоактивные ряды радия, актиния и тория и имеют исторические, ныне устаревшие названия:

  • радиоактиний
    227Th
    ,
  • радиоторий 228Th,
  • ионий 230Th,
  • уран Y
    231Th
    ,
  • уран X1
    234Th
    .

Наиболее стабильными изотопами являются 232Th (

229Th (7340 лет), 228Th (1,9116 года). Остальные изотопы имеют периоды полураспада менее 30 дней (большинство из них имеют периоды полураспада менее 10 минут)[6]
.

Изотоп тория

эВ, что дает возможность для прямого возбуждения этого ядерного состояния существующими лазерами, что в перспективе может позволить создать на этой основе ядерные часы[англ.], на несколько порядков превосходящие по точности атомные часы[7][8][9]
.

Химические свойства

Торий относится к семейству актиноидов. Однако ввиду специфической конфигурации электронных оболочек торий напоминает по свойствам Ti, Zr, Hf.

Торий способен проявлять степени окисления +4, +3 и +2. Наиболее устойчива +4. Степени окисления +3 и +2 торий проявляет в галогенидах с Вr и I, полученных действием сильных восстановителей в твердой фазе. Ион Th4+ отличается сильной склонностью к гидролизу и образованию комплексных соединений.

Торий плохо растворяется в кислотах. Он растворим в концентрированных растворах НСl (6—12М) и HNO3 (8—16М) в присутствии ионов фтора. Легко растворяется в царской водке. Не реагирует с едкими щелочами.

При нагреве взаимодействует с водородом, галогенами, серой, азотом, кремнием, алюминием и рядом других элементов. Например, в атмосфере водорода при 400—600 °С образует гидрид ThH2.

Применение

Торий имеет ряд областей применения, в которых подчас играет незаменимую роль. Положение этого металла в

Периодической системе элементов и структура ядра
предопределили его применение в области мирного использования ядерной энергии.

Очищенный торий

Торий-232 — чётно-чётный изотоп (чётное число протонов и нейтронов), поэтому не способен делиться тепловыми нейтронами и быть ядерным горючим. Но при захвате теплового нейтрона 232Th превращается в 233U по схеме

жидкосолевых реакторах) совместно с соединениями урана и плутония
и вспомогательными добавками.

Так как общие запасы тория в 3—4 раза превышают запасы урана в земной коре, то ядерная энергетика при использовании тория позволит на сотни лет полностью обеспечить энергопотребление человечества.

Кроме ядерной энергетики, торий в виде металла с успехом применяется в металлургии (легирование магния и др.), придавая сплаву повышенные эксплуатационные характеристики (сопротивление разрыву, жаропрочность). Отчасти торий в виде окиси применяется в производстве высокопрочных композиций как упрочнитель (для авиапромышленности). Оксид тория из-за его наивысшей температуры плавления из всех оксидов (3350 K) и неокисляемости идёт на производство наиболее ответственных конструкций и изделий, работающих в сверхмощных тепловых потоках, и может быть идеальным материалом для облицовки камер сгорания и газодинамических каналов для МГД-электростанций. Тигли, изготовленные из оксида тория, применяются при работах в области температур около 2500—3100 °C. Ранее оксид тория применялся для изготовления калильных сеток в газовых светильниках.

Торированные катоды прямого накала применяются в электронных лампах, а оксидно-ториевые — в магнетронах и мощных генераторных лампах. Добавка 0,8—1 % ThO2 к вольфраму стабилизирует структуру нитей ламп накаливания. Ксеноновые дуговые лампы почти всегда имеют торированные катод и анод, поэтому незначительно радиоактивны. Оксид тория применяется как элемент сопротивления в высокотемпературных печах. Торий и его соединения широко применяют в составе катализаторов в органическом синтезе.

Tokyo Kogaku)[10]
.

Биологическая роль

Торий постоянно присутствует в тканях растений и животных.

надпочечниками
; плохо всасывается из желудочно-кишечного тракта. У человека среднесуточное поступление тория с продуктами питания и водой составляет 3 мкг; выводится из организма с мочой и калом (0,1 и 2,9 мкг соответственно). Торий малотоксичен, однако как природный радиоактивный элемент вносит свой вклад в естественный фон облучения организмов.

Примечания

  1. .
  2. 1 2 Мясоедов Б. Ф. Торий // Химическая энциклопедия : в 5 т. / Гл. ред. Н. С. Зефиров. — М.: Большая Российская энциклопедия, 1995. — Т. 4: Полимерные — Трипсин. — С. 613—614. — 639 с. — 40 000 экз. — ISBN 5-85270-039-8.
  3. ГОСТ 30108-94. Архивная копия от 9 октября 2021 на Wayback Machine Приложение А.
  4. Источник. Дата обращения: 25 сентября 2010. Архивировано 30 сентября 2013 года.
  5. Бекман И. Н. Торий Архивная копия от 13 ноября 2013 на Wayback Machine. Курс лекций.
  6. [2406.18719] Frequency ratio of the $^{229\mathrm{m}}$Th nuclear isomeric transition and the $^{87}$Sr atomic clock
  7. https://www.actaphys.uj.edu.pl/fulltext?series=Reg&vol=51&page=561
  8. [1811.03889] Towards a 229Th-based nuclear clock
  9. А. Мотыляев. Торий: факты и фактики | Научно-популярный журнал «Химия и жизнь» 2019 №8. hij.ru (август 2019). Дата обращения: 12 декабря 2024.

Ссылки