Бериллий

Материал из Википедии — свободной энциклопедии
Бериллий
← Литий | Бор →
4 Be

Mg
Периодическая система элементовВодородГелийЛитийБериллийБорУглеродАзотКислородФторНеонНатрийМагнийАлюминийКремнийФосфорСераХлорАргонКалийКальцийСкандийТитанВанадийХромМарганецЖелезоКобальтНикельМедьЦинкГаллийГерманийМышьякСеленБромКриптонРубидийСтронцийИттрийЦирконийНиобийМолибденТехнецийРутенийРодийПалладийСереброКадмийИндийОловоСурьмаТеллурИодКсенонЦезийБарийЛантанЦерийПразеодимНеодимПрометийСамарийЕвропийГадолинийТербийДиспрозийГольмийЭрбийТулийИттербийЛютецийГафнийТанталВольфрамРенийОсмийИридийПлатинаЗолотоРтутьТаллийСвинецВисмутПолонийАстатРадонФранцийРадийАктинийТорийПротактинийУранНептунийПлутонийАмерицийКюрийБерклийКалифорнийЭйнштейнийФермийМенделевийНобелийЛоуренсийРезерфордийДубнийСиборгийБорийХассийМейтнерийДармштадтийРентгенийКоперницийНихонийФлеровийМосковийЛиверморийТеннессинОганесон
Периодическая система элементов
4Be
Внешний вид простого вещества
Поликристаллический фрагмент бериллия.
Чистота >99%.
Свойства атома
Название, символ, номер Бери́ллий / Beryllium (Be), 4
период
, блок
2 (устар. IIA), 2,
s-элемент
Атомная масса
(молярная масса)
9,012182(3)[1] а. е. м. (г/моль)
Электронная конфигурация [ He ] 2s2
1s22s2
Радиус атома 112 пм
Химические свойства
Ковалентный радиус 90 пм
Радиус иона 35 (+2e) пм
Электроотрицательность 1,57 (шкала Полинга)
Электродный потенциал −1,69 В
Степени окисления 0, +2
Энергия ионизации
(первый электрон)
898,8 (9,32) кДж/моль (эВ)
Термодинамические свойства простого вещества
Плотность (при н. у.) 1,848 г/см³
Температура плавления 1551 K (1278 °C, 2332 °F)
Температура кипения 3243 K (2970 °C, 5378 °F)
Мол. теплота плавления 12,21 кДж/моль
Мол. теплота испарения 309 кДж/моль
Молярная теплоёмкость 16,44[2] Дж/(K·моль)
Молярный объём 5,0 см³/моль
Кристаллическая решётка простого вещества
Структура решётки Гексагональная
Параметры решётки
a=2,286 Å; c=3,584 Å
Отношение c/a 1,567
Температура Дебая 1000 K
Прочие характеристики
Теплопроводность (300 K) 201 Вт/(м·К)
Номер CAS 7440-41-7
4
Бериллий
9.0121831
1s² 2s²

Бери́ллий (

атомным номером
4.

Как

простое вещество бериллий — это хрупкий относительно твёрдый металл светло-серого цвета с характерным металлическим блеском. Чрезвычайно токсичен. Бериллий и его соединения являются канцерогенами[2], группа 1 по классификации МАИР[3]
.

История

Воклен, Луи Никола

Открыт в 1798 году французским химиком Луи Никола Вокленом, который назвал его глюцинием. Современное название элемент получил по предложению химиков немца Клапрота и шведа Экеберга.

Большую работу по установлению состава соединений бериллия и его минералов провёл русский химик Иван Авдеев. Именно он доказал, что оксид бериллия имеет состав BeO, а не Be2O3, как считалось ранее.

В свободном виде бериллий был выделен в 1828 году французским химиком Антуаном Бюсси и независимо от него немецким химиком Фридрихом Вёлером. Чистый металлический бериллий был получен в 1898 году французским физиком Полем Лебо с помощью электролиза расплавов солей[4].

Происхождение названия

Название бериллия произошло от названия минерала

Мадраса; с древних времён в Индии были известны месторождения изумрудов — разновидности берилла. Из-за сладкого вкуса растворимых в воде соединений бериллия элемент вначале называли «глиций» (др.-греч. γλυκύς — сладкий)[5]
.

Происхождение бериллия

В процессах как

звёздного нуклеосинтеза
рождаются лишь лёгкие нестабильные изотопы бериллия. Стабильный изотоп может появиться как в звёздах, так и в
межзвёздной среде в результате распада более тяжелых ядер, бомбардируемых космическими лучами[6]. В атмосфере Земли радиоактивный непрерывно образуется в результате расщепления ядер кислорода космическими лучами[7].

Нахождение в природе

Во Вселенной бериллий — относительно редкий элемент, потому что он не образуется в результате

слюдах, и др.). В щелочных пегматитах бериллий устанавливается в небольших количествах в составе редких минералов: эвдидимита, чкаловита, анальцима и лейкофана, где он входит в анионную группу. Постмагматические растворы выносят бериллий из магмы в виде фторсодержащих эманаций и комплексных соединений в ассоциации с вольфрамом, оловом, молибденом и литием
.

Содержание бериллия в морской воде чрезвычайно низкое — 6⋅10−7 мг/л[10].

Известно более 30 собственно бериллиевых минералов, но только 6 из них считаются более-менее распространёнными: берилл, хризоберилл, бертрандит, фенакит, гельвин, даналит. Промышленное значение имеет в основном берилл и бертрандит.

Разновидности берилла считаются драгоценными камнями: аквамарин — голубой, зеленовато-голубой, голубовато-зелёный; изумруд — густо-зелёный, ярко-зелёный; гелиодор — жёлтый; известны ряд других разновидностей берилла, различающихся окраской (тёмно-синие, розовые, красные, бледно-голубые, бесцветные и др.). Цвет бериллу придают примеси различных элементов.

Месторождения

Месторождения минералов бериллия присутствуют на территории Бразилии, Аргентины, Африки, Индии, Казахстана, России (Ермаковское месторождение в Бурятии, Малышевское месторождение в Свердловской области, пегматиты восточной и юго-восточной части Мурманской области) и др[11]. Бертрандит наиболее распространён в США, особенно в штате Юта.

Изотопы бериллия

Природный бериллий состоит из единственного

изотопа 9Be. Все остальные изотопы бериллия (их известно 11, кроме стабильного 9Be) нестабильны. Наиболее долгоживущих из них два: 10Be с периодом полураспада около 1,4 млн лет и 7Be с периодом полураспада 53 дня[12].Физические свойства

Шар из бериллия

Бериллий — металл серебристо-белого цвета, обладающий относительно высокой твёрдостью (5,5 баллов по Моосу), что превосходит по твёрдости другие лёгкие металлы (алюминий, магний). Хрупок. Имеет высокий модуль упругости — 300 ГПа (у сталей — 200—210 ГПа). Скорость звука в бериллии очень высока — 12 600 м/с, что в 2—3 раза больше, чем в других металлах. Имеет высокую теплопроводность и высокую температуру плавления.

Химические свойства

Для бериллия характерны две

степени окисления — 0 и +2. Степень окисления +1 у бериллия была получена при исследовании процессов испарения бериллия в вакууме в тиглях из оксида бериллия ВеО с образованием летучего оксида Ве2O в результате сопропорционирования[13]

.

По многим химическим свойствам бериллий больше похож на алюминий, чем на находящийся непосредственно под ним в таблице Менделеева магний (проявление «диагонального сходства»).

Металлический бериллий относительно малореакционноспособен при комнатной температуре, т.к. на воздухе активно покрывается стойкой оксидной плёнкой

BeO. В компактном виде он не реагирует с водой и водяным паром даже при температуре красного каления и не окисляется воздухом до 600 °C. Порошок бериллия при поджигании горит ярким пламенем, при этом образуются оксид и нитрид. Галогены реагируют с бериллием при температуре выше 600 °C, а халькогены требуют ещё более высокой температуры. Аммиак взаимодействует с бериллием при температуре выше 1200 °C с образованием нитрида Be3N2, а углерод даёт карбид Ве2С при 1700 °C. С водородом бериллий непосредственно не реагирует[2]
.

Бериллий легко растворяется в разбавленных водных растворах кислот (соляной, серной кислотами, а азотной кислотой при нагревании), при этом холодная концентрированная азотная кислота пассивирует металл[2].

Реакция бериллия с водными растворами щелочей сопровождается выделением водорода и образованием гидроксобериллатов:

.

При проведении реакции с расплавом щёлочи при 400—500 °C образуются бериллаты:

.

Гидроксид бериллия(II) амфотерен, причём как основные (с образованием Be2+), так и кислотные (с образованием [Be(OH)4]2−) свойства выражены слабо. Получают осаждением аммиаком из водных солей бериллия.

Получение

В виде простого вещества в XIX веке бериллий получали действием калия на безводный хлорид бериллия[2]:

В настоящее время бериллий получают, восстанавливая фторид бериллия магнием[2]:

либо электролизом расплава смеси хлоридов бериллия и натрия. Исходные соли бериллия выделяют при переработке бериллиевой руды.

Производство и применение

По состоянию на 2012 год основными производителями бериллия являлись:

США (с большим отрывом) и Китай. Кроме них бериллиевую руду перерабатывает также Казахстан[14]. В 2014 году произвела первый образец бериллия и Россия[15]. На долю остальных стран в 2012 году приходилось 4 % мировой добычи. Всего в мире производится 300 тонн бериллия в год (2016 год)[16]
.

Легирование сплавов

Бериллий в основном используют как

рандоль. Благодаря его сходству с золотом рандоль называют «цыганским золотом»[17]
.

Рентгенотехника

Бериллий слабо поглощает рентгеновское излучение, поэтому из него изготавливают окошки рентгеновских трубок (через которые излучение выходит наружу) и окошки рентгеновских и широкодиапазонных гамма-детекторов, через которые излучение проникает в детектор.

Ядерная энергетика

В атомных реакторах из бериллия изготовляют отражатели нейтронов, его используют как замедлитель нейтронов. В смесях с некоторыми α-радиоактивными нуклидами бериллий используют в ампульных нейтронных источниках, так как при взаимодействии ядер бериллия-9 и α-частиц возникают нейтроны:

9Ве + α → n + 12C.

Оксид бериллия наряду с металлическим бериллием служит в атомной технике как более эффективный замедлитель и отражатель нейтронов, чем чистый бериллий. По этой причине оксид бериллия в смеси с окисью урана применяется в качестве очень эффективного ядерного топлива. Фторид бериллия в сплаве с фторидом лития применяется в качестве теплоносителя и растворителя солей урана, плутония, тория в высокотемпературных жидкосолевых атомных реакторах.

Фторид бериллия используется в атомной технике для варки стекла, применяемого для регулирования небольших потоков нейтронов. Самый технологичный и качественный состав такого стекла − (BeF2 — 60 %, PuF4 — 4 %, AlF3 — 10 %, MgF2 — 10 %, CaF2 — 16 %). Этот состав наглядно показывает один из примеров применения соединений плутония в качестве конструкционного материала (частичное).

Лазерные материалы

В лазерной технике находит применение алюминат бериллия для изготовления твердотельных излучателей (стержней, пластин).

Аэрокосмическая техника

В производстве тепловых экранов и систем наведения с бериллием не может конкурировать практически ни один конструкционный материал. Конструкционные материалы на основе бериллия обладают одновременно и лёгкостью, и прочностью, и стойкостью к высоким температурам. Будучи в 1,5 раза легче алюминия, эти сплавы в то же время прочнее многих специальных сталей. Налажено производство бериллидов, применяемых как конструкционные материалы для двигателей и обшивки ракет и самолётов, а также в атомной технике.

Бериллий и его сплавы применялись при конструировании оборудования используемого астронавтами программы «Аполлон», в частности контейнеров ловушек ядер инертных газов и теплозащитных экранов радиоизотопных энергетических установок SNAP-27.[18]

Особый интерес представляют для астрономов бериллиевые зеркала[19]. Зеркала большой площади, часто с сотовой опорной конструкцией, используются, например, в метеорологических спутниках, где малый вес и долговременная стабильность размеров имеют решающее значение. Первичное зеркало космического телескопа Джеймса Уэбба состоит из 18 шестиугольных сегментов, изготовленных из позолоченного бериллия[20][21]. Поскольку телескоп будет работать при температуре 33 К, такое зеркало способно выдерживать экстремальные холода лучше, чем стекло. Бериллий сжимается и деформируется меньше чем стекло и остается более однородным при таких температурах. По той же причине оптика космического телескопа Спитцер полностью построена из металлического бериллия[источник не указан 736 дней].

Ракетное топливо

Стоит отметить высокую токсичность и высокую стоимость металлического бериллия, и в связи с этим приложены значительные усилия для выявления бериллийсодержащих топлив, имеющих значительно меньшую общую токсичность и стоимость. Одним из таких соединений бериллия является гидрид бериллия.

Огнеупорные материалы

Оксид бериллия 99,9 % (изделие)

Оксид бериллия является наиболее теплопроводным из всех оксидов, его теплопроводность при комнатной температуре выше, чем у большинства металлов и почти всех неметаллов (кроме алмаза и карбида кремния). Он служит высокотеплопроводным высокотемпературным изолятором и огнеупорным материалом для лабораторных тиглей и в других специальных случаях.

Акустика

Ввиду своей лёгкости и высокой твёрдости бериллий успешно применяется в качестве материала для электродинамических громкоговорителей. Однако, его высокая стоимость, сложность обработки (из-за хрупкости) и токсичность (при несоблюдении технологии обработки) ограничивают применение динамиков с бериллием дорогими профессиональными аудиосистемами[22]. Из-за высокой эффективности бериллия в акустике некоторые производители в целях улучшения продаж заявляют о применении бериллия в своих продуктах, в то время как это не так[23].

Большой адронный коллайдер

В точках столкновения пучков на

Большом адронном коллайдере
(БАК) вакуумная труба сделана из бериллия. Он одновременно практически не взаимодействует с частицами, произведёнными в столкновениях (которые регистрируют детекторы), но при этом достаточно прочен.

Биологическая роль и физиологическое действие

Ежедневное поступление бериллия в организм человека с пищей составляет около 0,01 мг. В живых организмах бериллий не несёт какой-либо значимой биологической функции. Однако бериллий может замещать

ферментах
, что приводит к нарушению их работы.

Бериллий

фосфатаз уже при содержании 2–16 мг/л, что проявляется в виде недоразвитых корней и чахлых листьев[24]. Для гидробионтов ЛД50 находится в диапазоне концентраций 15–32 мг/л[24]
.

Токсическое действие бериллия связано с его проникновением в ядра клеток, что вызывает генные мутации, хромосомные аберрации и сестринский хроматидный обмен[24]. Также ионы бериллия участвуют в конкурентных реакциях с ионами магния, кальция, марганца, что приводит к блокированию активации ими ферментов[24].

Летучие (и растворимые) соединения бериллия, в том числе и пыль, содержащая соединения бериллия, высокотоксичны для людей. Для воздуха

ПДК в пересчёте на бериллий составляет 0,001 мг/м³. Бериллий обладает ярко выраженным аллергическим и канцерогенным действием. Вдыхание атмосферного воздуха, содержащего бериллий, приводит к тяжёлому заболеванию органов дыхания — бериллиозу[25][26]. При этом отсутствует влияние бериллия на репродуктивную функцию и развитие плода[24]
.

См. также

Примечания

  1. 5 февраля 2014 года.
  2. 1 2 3 4 5 6 Бериллий // Химическая энциклопедия : в 5 т. / Гл. ред. И. Л. Кнунянц. — М.: Советская энциклопедия, 1988. — Т. 1: А — Дарзана. — С. 280–281. — 623 с. — 100 000 экз. — ISBN 5-85270-008-8.
  3. List of Classifications. Agents classified by the IARC Monographs, Volumes 1–135 (англ.). International Agency for Research on Cancer (IARC). Дата обращения: 27 февраля 2024. Архивировано 5 апреля 2021 года.
  4. Венецкий С. И. Металл космического века // Рассказы о металлах. — Москва: Металлургия, 1979. — 240 с. — 60 000 экз.
  5. Timothy P. Hanusa. Beryllium (англ.). Encyclopædia Britannica. Encyclopædia Britannica, inc. (26 февраля 2020). Дата обращения: 26 июля 2020. Архивировано 23 октября 2021 года.
  6. Ишханов Б.C., Капитонов И.М., Тутынь И.А. Образование легчайших ядер 2H, He, Li, Be, B // Нуклеосинтез во Вселенной. — М.: Изд-во Московского университета, 1998.
  7. Emsley, John. Nature's Building Blocks: An A–Z Guide to the Elements. — Oxford, England, UK : Oxford University Press, 2001. — ISBN 978-0-19-850340-8.
  8. Abundance in the sun. Mark Winter, The University of Sheffield and WebElements Ltd, UK. WebElements. Дата обращения: 6 августа 2011. Архивировано из оригинала 27 августа 2011 года.
  9. Merck contributors. The Merck Index: An Encyclopedia of Chemicals, Drugs, and Biologicals. — 14th. — Whitehouse Station, NJ, USA : Merck Research Laboratories, Merck & Co., Inc., 2006. — ISBN 978-0-911910-00-1.
  10. Riley J.P. and Skirrow G. Chemical Oceanography. — 1965. — Vol. I.
  11. Популярная библиотека химических элементов. Бериллий. Книги. Наука и техника. Дата обращения: 25 марта 2007. Архивировано 18 апреля 2015 года.
  12. Бериллий Архивная копия от 28 июля 2009 на Wayback Machine — Кругосвет
  13. Тамм М. Е., Третьяков Ю. Д. Неорганическая химия / под редакцией Ю. Д. Третьякова. — М., 2008. — Т. 1. — 239 с.
  14. Мировой рынок бериллия. EREPORT.RU. Дата обращения: 26 июля 2020. Архивировано 11 августа 2016 года.
  15. Россия произвела первый образец собственного бериллия. Взгляд (16 января 2015). Дата обращения: 18 января 2015. Архивировано 19 января 2015 года.
  16. Чумаков В. Страсти по бериллию // В мире науки. — 2017. — № 4. — С. 64—69. — URL: https://sciam.ru/articles/details/strasti-po-berilliyu Архивная копия от 22 апреля 2017 на Wayback Machine
  17. Рандоль металл. Свойства рандоли. Применение рандоли. «Твой ювелир» (24 апреля 2014). Дата обращения: 7 мая 2014. Архивировано 8 мая 2014 года.
  18. Д. Ю. Гольдовский — Программа «Аполлон». Часть II. Обзор по материалам открытой иностранной печати, опубликованным до 1 июня 1971 года. — ГОНТИ-1, 1971 г. — Стр. 110, 118.
  19. Бериллиевые зеркала помогут астрономам и производителям электроники. ТАСС. Дата обращения: 27 июня 2022. Архивировано 14 мая 2022 года.
  20. Р. И. А. Новости. НАСА закончило подготовку зеркал телескопа "Джеймс Уэбб". РИА Новости (20110630T2227). Дата обращения: 27 июня 2022. Архивировано 27 июня 2022 года.
  21. Телескоп James Webb открыл свой «золотой глаз», завершив тем самым развертывание в космосе. www.astronews.ru. Дата обращения: 27 июня 2022. Архивировано 9 января 2022 года.
  22. Johnson, Jr., John E. Usher Be-718 Bookshelf Speakers with Beryllium Tweeters (англ.) (12 ноября 2007). Дата обращения: 18 сентября 2008. Архивировано 13 июня 2011 года.
  23. Svilar, Mark Analysis of "Beryllium" Speaker Dome and Cone Obtained from China (англ.) (8 января 2004). Дата обращения: 13 февраля 2009. Архивировано 17 мая 2013 года.
  24. 1 2 3 4 5 Филов В. А. Бериллий и его соединения: окружающая среда, токсикология, гигиена // Рос. хим. журнал. — 2004. — Т. 48, вып. 2. — С. 76—86. Архивировано 13 января 2022 года.
  25. Batich, Ray and James M. Marder. Metals Handbook: Metallography and Microstructures. — Ed. 9. — Metals Park, Ohio : American Society for Metals, 1985. — P. 389—391.
  26. Советская энциклопедия
    , 1976. — Т. 3 : Беклемишев — Валидол. — С. 69—71. — 584 с. : ил.

Литература

  • Бериллий: Сборник переводных статей из иностранной периодической литературы: Редкие металлы. — М.: Иностранная литература, 1955. — Т. 3.: Геохимия, минералогия и месторождения бериллия. — 188 с.
  • Беус А. А. Требования промышленности к качеству минерального сырья: Справочник для геологов. — 2-е изд. — М.: Госгеолтехиздат, 1959. — 38 с.
  • Беус А. А. Бериллий, где и как его искать. — 2-е издание. — М.: Госгеолтехиздат, 1962. — 28 с. — (Библиотечка искателя полезных ископаемых).

Ссылки